Skip to main content

Advertisement

Log in

Effects of water level and competition on the endangered river corridor plant Cnidium dubium in the context of climate change

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

River corridors are hotspots of biodiversity and harbour plant species which are predominantly distributed in this dynamic ecosystem (river corridor plants). During the last centuries, floodplain meadows became increasingly threatened due to dike constructions and land use changes. An additional threat from future climate change might be posed by the increased probability of drought during summer due to reduced precipitation and water levels in the rivers. Our aim was to test how the characteristic floodplain meadow plant Cnidium dubium responds to water level changes, and to develop implications for its management in the course of climate change. Two mesocosm experiments were set up with plants originating from floodplain meadows along two tributaries of the Elbe River, Germany. In the first experiment, we investigated growth characteristics and biomass of juvenile C. dubium individuals in response to groundwater level (20, 40, and 60 cm below soil surface) and origin. In the second experiment, competitors were included to analyse interactive effects of competition and the water level on mature plants of C. dubium. The growth of C. dubium was affected by the water level, with a physiological optimum at water levels of 40–60 cm below soil surface. C. dubium showed adaptations to the sites of seed origin and evidence for phenotypic plasticity in relation to competition, which suggests that this species might possess adaptation potential. Nevertheless, we propose raising the groundwater level to 20–60 cm below soil surface as a possible management strategy, when drought (as a consequence of climate change) is perceivable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asby G (1973) Development of root buds in Cnidium dubium and in some other herbaceous plants. Bot Tidsskrift 68:30–40

    Google Scholar 

  • Berg MP, Kiers ET, Driessen G, van der Heijden M, Kooi BW, Kuenen F, Liefting M, Verhoef HA, Ellers J (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol 16:587–598

    Article  Google Scholar 

  • Brunotte E, Dister E, Günther-Diringer D, Koenzen U, Mehl D, Amberger P, Bonn R, Döpke M (2009) Flussauen in Deutschland. Erfassung und Bewertung des Auenzustandes. Naturschutz und Biologische Vielfalt 87:3–139

    Google Scholar 

  • Burkart M (2001) River corridor plants (Stromtalpflanzen) in Central European lowland: a review of a poorly understood plant distribution pattern. Global Ecol Biogeogr 10:449–468

    Article  Google Scholar 

  • Čížková H, Květ J, Comín FA, Laiho R, Pokorný J, Pithart D (2013) Actual state of European wetlands and their possible future in the context of global climate change. Aquat Sci 75:3–26

    Article  Google Scholar 

  • Conradt T, Koch H, Hattermann FF, Wechsung F (2012) Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River basin. Reg Environ Change 12:633–648

    Article  Google Scholar 

  • Donath TW, Hölzel N, Otte A (2003) The impact of site conditions and seed dispersal on restoration success in alluvial meadows. Appl Veg Sci 6:13–22

    Article  Google Scholar 

  • Dytham C (2003) Choosing and using statistics. A biologist’s guide, 2nd edn. Blackwell Pub., Malden

  • Ellenberg H (1954) Ueber einige Fortschritte der kausalen Vegetationskunde. Vegetatio 5–6:199–211

    Article  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17:71–84

    Article  Google Scholar 

  • Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243

    Article  Google Scholar 

  • Geißler K, Gzik A (2008) Ramet demography and ecological attributes of the perennial river corridor plant Cnidium dubium (Schkuhr) Thell. (Apiaceae). Flora 203:396–408

    Article  Google Scholar 

  • Gerard M, El Kahloun M, Rymen J, Beauchard O, Meire P (2008) Importance of mowing and flood frequency in promoting species richness in restored floodplains. J Appl Ecol 45:1780–1789

    Article  Google Scholar 

  • Givnish TJ, Vermeij GJ (1976) Sizes and Shapes of Liane Leaves. Am Nat 975:743–778

    Article  Google Scholar 

  • Görgen K, Beersman J, Brahmer G, Buiteveld H, Carambia M, de Keizer O, Krahe P, Nilson E, Lammersen R, Perrin C, Volken D (2010) Assessment of climate change impacts on discharge in the Rhine Basin: results of the RheinBlick2050 Project. Lelystad

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Härdtle W, Redecker B, Assmann T, Meyer H (2006) Vegetation responses to environmental conditions in floodplain grasslands. Prerequisites for preserving plant species diversity. Basic Appl Ecol 7:280–288

    Article  Google Scholar 

  • Hegi G (1965) Illustrierte Flora von Mitteleuropa, 1st edn. Hanser Verlag, München

    Google Scholar 

  • Higgins SI, Lavorel S, Revilla E (2003) Estimating plant migration rates under habitat loss and fragmentation. Oikos 101:354–366

    Article  Google Scholar 

  • Honnay O, Verheyen K, Butaye J, Jacquemyn H, Bossuyt B, Hermy M (2002) Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecol Lett 5:525–530

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K (2008) Klimaauswirkungen und Anpassung in Deutschland: Phase 1: Erstellung regionaler Klimaszenarien für Deutschland. Umweltbundesamt, Dessau-Roßlau

    Google Scholar 

  • Jensen K, Reisdorff C, Pfeiffer EM, Oheimb Gv, Schmidt K, Schmidt SR, Schrautzer J, Meyer-Grünefeldt M, Härdtle W (2011) Klimabedingte Änderungen in terrestrischen und semi-terrestrischen Ökosystemen. In: Klimabericht für die Metropolregion Hamburg. Springer, Berlin, pp 143–176

  • Jentsch A, Kreyling J, Elmer M et al (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702

    Article  Google Scholar 

  • Joyce CB, Wade PM (1998) Wet grasslands: a European perspective. In: Joyce CB, Wade PM (eds) European wet grasslands: biodiversity, management and restoration. Wiley, Chichester, pp 1–12

    Google Scholar 

  • Jump AS, Marchant R, Peñuelas J (2009) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58

    Article  CAS  PubMed  Google Scholar 

  • Keddy PA (1990) Competitive hierarchies and centrifugal organization in plant communities. In: Grace JB, Tilman D (eds) Perspectives on Plant Competition. Academic Press, San Diego, pp 265–290

    Chapter  Google Scholar 

  • Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811

    Article  Google Scholar 

  • Lenssen JP, van de Steeg HM, de Kroon H (2004) Does disturbance favour weak competitors? Mechanisms of changing plant abundance after flooding. J Veg Sci 15:305–314

    Article  Google Scholar 

  • Leyer I (2002) Auengrünland der Mittelelbe-Niederung. Vegetationskundliche und -ökologische Untersuchungen in der rezenten Aue, der Altaue und am Auenrand der Elbe. J. Cramer, Berlin

  • Leyer I (2004) Effects of dykes on plant species composition in a large lowland river floodplain. River Res Appl 20:813–827

    Article  Google Scholar 

  • Londo G (1976) The decimal scale for releves of permanent quadrats. Plant Ecol 33:61–64

    Article  Google Scholar 

  • Ludwig G, Schnittler M (1996) Rote Liste gefährdeter Pflanzen Deutschlands. Bundesamt für Naturschutz, Bonn-Bad Godesberg

    Google Scholar 

  • Michalczyk IM, Schumacher C, Mengel C, Leyer I, Liepelt S (2011) Identification and characterization of 12 microsatellite loci in Cnidium dubium (Apiaceae) using next-generation sequencing. Am J Bot 98:e127–e129

    Article  CAS  PubMed  Google Scholar 

  • Naiman RJ, Decamps H, Pollock M (1993) The Role of Riparian Corridors in Maintaining Regional Biodiversity. Ecol Appl 3:209–212

    Article  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan J, Mathesius U, Poot P, Purugganan MD, Valladares F, Kleunen Mv (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 12:684–692

    Article  Google Scholar 

  • Pauls SU, Nowak C, Bálint M, Pfenninger M (2012) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946

    Article  PubMed  Google Scholar 

  • Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61–63

    Article  CAS  Google Scholar 

  • Suding KN, Goldberg D (2001) Do disturbances alter competitive hierarchies? Mechanisms of change following gap creation. Ecology 82:2133–2149

    Article  Google Scholar 

  • Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:308–330

    Google Scholar 

  • Toogood SE, Joyce CB (2009) Effects of raised water levels on wet grassland plant communities. Appl Veg Sci 12:283–294

    Article  Google Scholar 

  • Toth LA, van der Valk A (2012) Predictability of flood pulse driven assembly rules for restoration of a floodplain plant community. Wetl Ecol Manag 20:59–75

    Article  Google Scholar 

  • van Eck WHJM, van de Steeg HM, Blom CWPM, de Kroon H (2004) Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Oikos 107:393–405

    Article  Google Scholar 

  • Vogt K, Rasran L, Jensen K (2006) Seed deposition in drift lines during an extreme flooding event—evidence for hydrochorous dispersal? Basic Appl Ecol 7:422–432

    Article  Google Scholar 

  • Wesche K, Krause B, Culmsee H, Leuschner C (2012) Fifty years of change in Central European grassland vegetation: large losses in species richness and animal-pollinated plants. Biol Conserv 150:76–85

    Article  Google Scholar 

  • Wisskirchen R, Haeupler H (1998) Standardliste der Farn- und Blütenpflanzen Deutschlands. E. Ulmer, Stuttgart (Hohenheim)

    Google Scholar 

Download references

Acknowledgments

We thank all the landowners for allowing us to work on their property, and also local nature conservation authorities (especially Biosphere Reserves Elbe River of Lower Saxony and Saxony-Anhalt) for permits and kind cooperation. We thank Ian J. Bennett for proofreading our English and two anonymous referees for insightful comments on the manuscript. Further, we would like to thank Nikola Lenzewski, Tim Hartmann, Thomas Mleczek, and Julian Tudrzierz for washing the roots and sorting the biomass. This study was funded by the Federal Ministry of Education and Research as part of the research project KLIMZUG-NORD (grant number 01LR0805D). This study was supported by the Estuary and Wetland Research Graduate School Hamburg (ESTRADE) as member of the State Excellence Initiative (LExI), funded by the Hamburg Science and Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Ludewig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanke, J.M., Ludewig, K. & Jensen, K. Effects of water level and competition on the endangered river corridor plant Cnidium dubium in the context of climate change. Wetlands Ecol Manage 23, 215–226 (2015). https://doi.org/10.1007/s11273-014-9371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-014-9371-5

Keywords

Navigation