Skip to main content

Advertisement

Log in

Common reed (Phragmites australis) invasion and amphibian distribution in freshwater wetlands

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Invasive plants can substantially modify wetland structure and animal distribution patterns. In eastern North America, a Eurasian haplotype of the common reed (Phragmites australis, haplotype M) is invading wetlands. We studied the invasion of common reed in freshwater wetlands of an urbanized landscape and its effects on the distribution of amphibians at different life stages. Specifically, we hypothesized that the probability of reed invasion would be greatest in wetlands near anthropic disturbances. We predicted that the probability of desiccation at sampling stations increases with reed cover. Furthermore, we expected that wetlands invaded by common reed would have lower amphibian abundances, apparent survival, and rates of recruitment. We conducted trapping surveys to compare anuran assemblages of tadpoles, juveniles, and adults in 50 wetlands during two field seasons. The probability of reed invasion in wetlands increased with the cover of heavily-managed areas within 1,000 m and the distance to the nearest forest, but decreased with the length of roads within 1,000 m. The probability of station desiccation increased with reed cover. We found no evidence of a negative effect of reed presence on anuran population parameters, at any life stage. Landscape variables, such as the percent cover of forest or heavily-managed areas within a given radius from each wetland, influenced the abundance or the apparent survival of juvenile frogs and the abundance of ranid tadpoles. Our results show that amphibian patterns depend more strongly on the structure of the landscape surrounding wetlands than on exotic reed invasion in wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Able KW, Hagan SM (2000) Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: response of fishes and decapod crustaceans. Estuaries Coasts 23:633–646

    Article  Google Scholar 

  • Adams M, Richter K, Leonard W (1997) Surveying and monitoring pond-breeding amphibians using aquatic funnel traps. In: Olson D, Leonard WP, Bury RB (eds) Sampling amphibians in lentic habitats: methods and approaches for the Pacific Northwest. Society for Northwestern Vertebrate Biology, Olympia, Washington, pp 47–54

    Google Scholar 

  • Altwegg R, Reyer H-U (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evol Anthropol 57:872–882

    Article  PubMed  Google Scholar 

  • Anderson DR (2001) The need to get the basics right in wildlife field studies. Wildl Soc Bull 29:1294–1297

    Google Scholar 

  • Andrews KM, Gibbons JW, Jochimsen DM (2008) Ecological effects of roads on amphibians and reptiles: a literature review. In: Mitchell JC, Jung Brown RE, Bartholomew B (eds) Urban herpetology. Society for the Study of Amphibians and Reptiles, Salt Lake City, Utah, pp 121–143

    Google Scholar 

  • Babbitt KJ, Baber MJ, Tarr TL (2003) Patterns of larval amphibian distribution along a wetland hydroperiod gradient. Can J Zool 81:1539–1552

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) Linear mixed-effects models using S4 classes. R package version 0.999999-0. http://cran.r-project.org/

  • Bart D, Burdick D, Chambers R, Hartman JM (2006) Human facilitation of Phragmites australis invasions in tidal marshes: a review. Wetl Ecol Manag 14:53-65

    Article  Google Scholar 

  • Benoit LK, Askins RA (1999) Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands Ecol Manag 19:194–208

    Article  Google Scholar 

  • Berven KA, Grudzien TA (1990) Dispersal in the wood frog (Rana sylvatica): implications for genetic population structure. Evol Anthropol 44:2047–2056

    Article  Google Scholar 

  • Bouchard J, Ford AT, Eigenbrod FE, Fahrig L (2009) Behavioral responses of northern leopard frogs (Rana pipiens) to roads and traffic: implications for population persistence. Ecol Soc 14:23. http://www.ecologyandsociety.org/vol14/iss2/art23/

    Google Scholar 

  • Bradford DF, Neale AC, Nash MS, Sada DW, Jaeger JR (2003) Habitat patch occupancy by toads (Bufo punctatus) in a naturally fragmented desert landscape. Ecol Freshw Fish 84:1012–1023

    Article  Google Scholar 

  • Brisson J, De Blois S, Lavoie C (2010) Roadside as invasion pathway for common reed (Phragmites australis). Invasive Plant Sci Manag 3:506–514

    Article  Google Scholar 

  • Burba GG, Verma SB, Kim J (1999) A comparative study of surface energy fluxes of three communities (Phragmites australis, Scirpus acutus, and open water) in a prairie wetland ecosystem. Wetlands Ecol Manag 19:451–457

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information–theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Canhoto C, Laranjeira C (2007) Leachates of Eucalyptus globulus in intermittent streams affect water parameters and invertebrates. Int Rev Hydrobiol 92:173–182

    Article  CAS  Google Scholar 

  • Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of North America. Aquat Bot 64:261–273

    Article  Google Scholar 

  • Cheruvelil KS, Soranno PA, Madsen JD, Roberson MJ (2002) Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. J N Am Benthol Soc 21:261–277

    Article  Google Scholar 

  • Cohen JS, Maerz JC, Blossey B (2012) Traits, not origin, explain impacts of plants on larval amphibians. Ecol Appl 22:218–228

    Article  PubMed  Google Scholar 

  • Cotten TB, Kwiatkowski MA, Saenz D, Collyer M (2012) Effects of an invasive plant, Chinese tallow (Triadica sebifera), on development and survival of anuran larvae. J Herpetol 46:186-193

    Article  Google Scholar 

  • Dail D, Madsen L (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67:577–587

    Article  CAS  PubMed  Google Scholar 

  • Davis MA (2009) Invasion biology. Oxford University Press, Oxford

    Google Scholar 

  • Desroches J-F, Rodrigue D (2004) Amphibiens et reptiles du Québec et des Maritimes. Éditions Michel Quintin, Waterloo, QC

    Google Scholar 

  • Dodd CK Jr (1996) Use of terrestrial habitats by amphibians in the sandhill uplands of north-central Florida. Alytes 14:42–52

    Google Scholar 

  • Dole JW (1965) Summer movements of adult leopard frogs, Rana pipiens Schreber, in northern Michigan. Ecol Freshw Fish 46:236–255

    Article  Google Scholar 

  • Dole JW (1968) Homing in leopard frogs, Rana pipiens. Ecol Freshw Fish 49:386–399

    Article  Google Scholar 

  • Dole JW (1971) Dispersal of recently metamorphosed leopard frogs, Rana pipiens. Copeia 1971:221–228

    Article  Google Scholar 

  • Drake JA, Mooney HA, Di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (1989) Biological invasions: a global perspective. Wiley, Chichester

    Google Scholar 

  • ESRI (2008) ArcGISTM. Environmental Systems Research Institute, Redlands

  • Fahrig L, Pedlar JH, Pope SE, Taylor PD, Wegner JF (1995) Effect of road traffic on amphibian density. Biol Conserv 73:177–182

    Article  Google Scholar 

  • Fiske I, Chandler R, Royle JA, Kéry M (2012) Unmarked: models for data from unmarked animals. R package version 0.9-9. http://cran.r-project.org/

  • Guerry AD, Hunter ML Jr (2002) Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conserv Biol 16:745–754

    Article  Google Scholar 

  • Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474

    Article  PubMed  Google Scholar 

  • Hamer AJ, Mahony MJ (2010) Rapid turnover in site occupancy of a pond-breeding frog demonstrates the need for landscape-level management. Wetlands Ecol Manag 30:287–299

    Article  Google Scholar 

  • Hamer AJ, Parris KM (2011) Local and landscape determinants of amphibian communities in urban ponds. Ecol Appl 21:378–390

    Article  PubMed  Google Scholar 

  • Hecnar SJ, M’Closkey RT (1998) Species richness patterns of amphibians in southwestern Ontario ponds. J Biogeogr 25:763–772

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (1989) Applied logistic regression. Wiley, New York

    Google Scholar 

  • Kercher SM, Zedler JB (2004) Multiple disturbances accelerate invasion of reed canary grass (Phalaris arundinacea L.) in a mesocosm study. Oecologia 138:455–464

    Article  PubMed  Google Scholar 

  • Kleinbaum DG, Kupper LL, Muller KE, Nizam A (1998) Applied regression analysis and other multivariable methods, 3rd edn. Duxbury Press, Toronto

    Google Scholar 

  • Knapp RA, Matthews KR, Preisler HK, Jellison R (2003) Developing probabilistic models to predict amphibian site occupancy in a patchy landscape. Ecol Appl 13:1069–1082

    Article  Google Scholar 

  • Knutson MG, Sauer JR, Olsen DA, Mossman MJ, Hemesath LM, Lannoo MJ (1999) Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA. Conserv Biol 13:1437–1446

    Article  Google Scholar 

  • Knutson MG, Richardson WB, Reineke DM, Gray BR, Parmelee JR, Weick SE (2004) Agricultural ponds support amphibian populations. Ecol Appl 14:669–684

    Article  Google Scholar 

  • Laan R, Verboom B (1990) Effects of pool size and isolation on amphibian communities. Biol Conserv 54:251–262

    Article  Google Scholar 

  • Laurila A, Kujasalo J (1999) Habitat duration, predation risk and phenotypic plasticity in common frog (Rana temporaria) tadpoles. J Anim Ecol 68:1123–1132

    Article  Google Scholar 

  • League M, Seliskar D, Gallagher J (2007) Predicting the effectiveness of Phragmites control measures using a rhizome growth potential bioassay. Wetl Ecol Manag 15:27–41

    Article  Google Scholar 

  • Le Cessie S, van Houwelingen JC (1991) A goodness-of-fit test for binary regression models, based on smoothing residuals. Biometrics 47:1267–1282

    Article  Google Scholar 

  • Lelong B, Lavoie C, Jodoin Y, Belzile F (2007) Expansion pathways of the exotic common reed (Phragmites australis): a historical and genetic analysis. Divers Distrib 13:430–437

    Article  Google Scholar 

  • Lelong B, Lavoie C, Thériault M (2009) Quels sont les facteurs qui facilitent l’implantation du roseau commun (Phragmites australis) le long des routes du sud du Québec? Ecoscience 16:224–237

    Article  Google Scholar 

  • Lockwood JL, Simberloff D, McKinney ML, Von Holle B (2001) How many, and which, plants will invade natural areas? Biol Invasions 3:1–8

    Article  Google Scholar 

  • Macdonald IAW, Loope LL, Usher MB, Hamann O (1989) Wildlife conservation and the invasion of nature reserves by introduced species: a global perspective. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 215–255

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, New York

    Google Scholar 

  • Maerz JC, Brown CJ, Chapin CT, Blossey B (2005a) Can secondary compounds of an invasive plant affect larval amphibians? Funct Ecol 19:970–975

    Article  Google Scholar 

  • Maerz JC, Blossey B, Nuzzo V (2005b) Green frogs show reduced foraging success in habitats invaded by Japanese knotweed. Biodivers Conserv 14:2901–2911

    Article  Google Scholar 

  • Maerz JC, Cohen JS, Blossey B (2010) Does detritus quality predict the effect of native and non-native plants on the performance of larval amphibians? Freshw Biol 55:1694–1704

    Google Scholar 

  • Marsh DM, Milam GS, Gorham NP, Beckman NG (2005) Forest roads as partial barriers to terrestrial salamander movement. Conserv Biol 19:2004–2008

    Article  Google Scholar 

  • Martin LJ, Murray BR (2011) A predictive framework and review of the ecological impacts of exotic plant invasions on reptile and amphibians. Biol Rev 86:407–419

    Article  PubMed  Google Scholar 

  • Martof B (1953) Home range and movements of the green frog, Rana clamitans. Ecol Freshw Fish 34:529–543

    Article  Google Scholar 

  • Mazerolle MJ (2012) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 1.26. http://cran.r-project.org/

  • Mazerolle MJ, Desrochers A (2005) Landscape resistance to frog movements. Can J Zool 83:455–464

    Article  Google Scholar 

  • Mazerolle MJ, Desrochers A, Rochefort L (2005) Landscape characteristics influence pond occupancy by frogs after accounting for detectability. Ecol Appl 15:824–834

    Article  Google Scholar 

  • Mazerolle MJ, Vos CC (2006) Choosing the safest route: frog orientation in an agricultural landscape. J Herpetol 40:435–441

    Article  Google Scholar 

  • Mazerolle MJ, Bailey LL, Kendall WL, Royle JA, Converse SJ, Nichols JD (2007) Making great leaps forward: accounting for detectability in herpetological field studies. J Herpetol 41:672–689

    Article  Google Scholar 

  • Meyer SW (2003) Comparative use of Phragmites australis and other habitats by birds, amphibians, and small mammals at Long Point, Ontario. M. Sc. thesis, University of Western Ontario

  • Meyerson LA, Chambers RM, Vogt KA (1999) The effects of Phragmites removal on nutrient pools in a freshwater tidal marsh ecosystem. Biol Invasions 1:129–136

    Article  Google Scholar 

  • Obert H-J (1976) Some effects of external factors upon the reproductive behavior of the grass frog Rana t. temporaria L. (Ranidae, Anura). Oecologia 24:43–55

    Article  Google Scholar 

  • Oseen KL, Wassersug RJ (2002) Environmental factors influencing calling in sympatric anurans. Oecologia 133:616–625

    Article  Google Scholar 

  • Pearl CA, Adams MJ, Leuthold N, Bury RB (2005) Amphibian occurrence and aquatic invaders in a changing landscape: implications for wetland mitigation in the Willamette Valley, Oregon, USA. Wetlands Ecol Manag 25:76–88

    Article  Google Scholar 

  • Perez A, Mazerolle MJ, Brisson J (2013) Effects of exotic common reed (Phragmites australis) on wood frog (Lithobates sylvaticus) tadpole development and food availability. J Freshw Ecol 28:165–177

    Article  CAS  Google Scholar 

  • Pollock KH (1982) A capture–recapture design robust to unequal probability of capture. J Wildl Manag 46:752–757

    Article  Google Scholar 

  • Pope SE, Fahrig L, Merriam HG (2000) Landscape complementation and metapopulation effects on leopard frog populations. Ecol Freshw Fish 81:2498–2508

    Article  Google Scholar 

  • Porej D, Hetherington TE (2005) Designing wetlands for amphibians: the importance of predatory fish and shallow littoral zones in structuring of amphibian communities. Wetl Ecol Manag 13:445–455

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.cran.r-project.org/.

  • Rogalski MA, Skelly DK (2012) Positive effects of nonnative invasive Phragmites australis on larval bullfrogs. PLoS ONE 7:e44420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rooth JE, Stevenson JC, Cornwell JC (2003) Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. Estuaries Coasts 26:475–483

    Article  Google Scholar 

  • Rothermel BB (2004) Migratory success of juveniles: a potential constraint on connectivity for pond-breeding amphibians. Ecol Appl 14:1535–1546

    Article  Google Scholar 

  • Rothermel BB, Semlitsch RD (2002) An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conserv Biol 16:1324–1332

    Article  Google Scholar 

  • Royle JA (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60:108–115

    Article  PubMed  Google Scholar 

  • Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations, and communities. Academic Press, New York

    Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Semlitsch RD (2002) Critical elements for biologically based recovery plans of aquatic breeding amphibians. Conserv Biol 16:619–629

    Article  Google Scholar 

  • Semlitsch RD (2008) Differentiating migration and dispersal processes for pond breeding amphibians. J Wildl Manag 72:260–267

    Article  Google Scholar 

  • Semlitsch RD, Bodie JR (2003) Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv Biol 17:1219–1228

    Article  Google Scholar 

  • Shulse CD, Semlitsch RD, Trauth SE (2013) Mosquitofish dominate amphibian and invertebrate community development in experimental wetlands. J Appl Ecol 50:1244–1256

    Google Scholar 

  • Silliman BR, Bertness MD (2004) Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv Biol 18:1424–1434

    Article  Google Scholar 

  • Sinsch U (1990) Migration and orientation in anuran amphibians. Ethol Ecol Evol 2:65–79

    Article  Google Scholar 

  • Steen DA, McClure CJW, Graham SP (2013) Relative influence of weather and season on anuran calling activity. Can J Zool 91:462–467

    Article  Google Scholar 

  • Talley T, Levin L (2001) Modification of sediments and macrofauna by an invasive marsh plant. Biol Invasions 3:51–68

    Article  Google Scholar 

  • Thorson T, Svihla A (1943) Correlation of the habitats of amphibians with their ability to survive the loss of body water. Ecol Freshw Fish 24:374–381

    Article  Google Scholar 

  • Thorson TB (1955) The relationship of water economy to terrestrialism in amphibians. Ecol Freshw Fish 36:100–116

    Article  Google Scholar 

  • Vos CC, Chardon JP (1998) Effects of habitat fragmentation and road density on the distribution pattern of the moor frog Rana arvalis. J Appl Ecol 35:44–56

    Article  Google Scholar 

  • Vos CC, Antonisse-De Jong AG, Goedhart PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86:598–608

    Article  CAS  PubMed  Google Scholar 

  • Warren RS, Fell PE, Grimsby JL, Buck EL, Rilling GC, Fertik RA (2001) Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries Coasts 24:90–107

    Article  Google Scholar 

  • Watling JI, Hickman CR, Lee E, Wang K, Orrock JL (2011a) Extracts of the invasive shrub Lonicera maackii increase mortality and alter behavior of amphibian larvae. Oecologia 165:153–159

    Article  CAS  PubMed  Google Scholar 

  • Watling JI, Hickman CR, Orrock JL (2011b) Invasive shrub alters native forest amphibian communities. Biol Conserv 144:2597–2601

    Article  Google Scholar 

  • Weyrauch SL, Grubb TC Jr (2004) Patch and landscape characteristics associated with the distribution of woodland amphibians in an agricultural fragmented landscape: an information–theoretic approach. Biol Conserv 115:443–450

    Article  Google Scholar 

  • Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, New York

    Google Scholar 

  • Windham L, Lathrop RG (1999) Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Estuaries Coasts 22:927–935

    Article  Google Scholar 

  • Wright AH, Wright AA (1949) Handbook of frogs and toads of the United States and Canada, 3rd edition. Comstock Publishing Company, Ithaca

    Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

Thanks to D. Chatillon, V. Vermette, D. Rodrigue, J.-F. Houle, S. Comptois for granting park access and lending field equipment. We used the Colosse high performance computing cluster of Calcul Québec to run certain models and assess model fit. This study was funded by National Sciences and Engineering Research Council (NSERC), the Fonds Québécois pour la recherche en nature et technologie (FQRNT), Ducks Unlimited Canada, the Canadian Wildlife Service, and the Quebec department of natural resources and wildlife (MRNF). V. Spinelli, V. Jourdan, V. Bonner, A.-A. Marmette, A. Daoust-Labelle, and A.-A. G. Payette assisted with the field work. S. Rouleau assisted in site selection. Comments from two anonymous reviewers improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. Mazerolle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazerolle, M.J., Perez, A. & Brisson, J. Common reed (Phragmites australis) invasion and amphibian distribution in freshwater wetlands. Wetlands Ecol Manage 22, 325–340 (2014). https://doi.org/10.1007/s11273-013-9332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-013-9332-4

Keywords

Navigation