Skip to main content
Log in

Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Aquatic weed Myriophyllum spicatum L. is one of the most invasive water plants known. In many countries, it is usually harvested and landfilled, where aerobic and anaerobic decomposition takes place. In this research, the kinetic, equilibrium, and desorption studies of biosorption of Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) ions onto compost of M. spicatum were investigated in batch experiments. Biosorbent was characterized by scaning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). SEM analysis showed that ion exchange between divalent cations Ca(II) and selected metals takes place. The results of FTIR exposed that carbonyl, carboxyl, hydroxyl, and phenyl groups are main binding sites for those heavy metal ions. The rate of adsorption of the five heavy metals was fast, which achieved equilibrium in 40 min, and followed the pseudo-second-order model well. Langmuir, Freundlich, and Sips equilibrium adsorption models were studied, and Sips isotherm gave the best fit for experimental data. Desorption by 0.1 M HNO3 did not fully recover the metals sorbed onto the compost, indicating that reusing this material as biosorbent is not possible. Furthermore, the use of spent biosorbent as a soil fertilizer is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aiken, S. G., Newroth, P. R., & Wile, I. (1979). The biology of Canadian weeds 34. Myriophyllum spicatum L. Canadian Journal of Plant Science, 59, 201–215.

    Article  Google Scholar 

  • Blanco, A., Sanz, B., Llama, M. J., & Serra, J. L. (1999). Biosorption of heavy metals to immobilised Phormidium laminosum biomass. Journal of Biotechnology, 69, 227–240.

    Article  CAS  Google Scholar 

  • Chen, G., Zeng, G., Tu, X., Huang, G., & Chen, Y. (2005). A novel biosorbent: characterization of spent mushroom compost and its application for removal of heavy metals. Journal of Environmental Sciences, 17(5), 756–760.

    CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A., & Górecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, 75–84.

    Article  CAS  Google Scholar 

  • Couch R., & Nelson E., (1985). Myriophyllum spicatum in North America. First international symposium on watermilfoil (Myriophyllum spicatum) and related Haloragaceae species, Vancouver, Canada.

  • Derkacheva, O., & Sukhov, D. (2008). Investigation of lignins by FTIR spectroscopy. Macromolecular Symposia, 265, 61–68.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1906). Adsorption in solutions. Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Grimes, S. M., Taylor, G. H., & Cooper, J. (1999). The availability and binding of heavy metals in compost derived from household waste. Journal of Chemical Technology and Biotechnology, 74, 1125–1130.

    Article  CAS  Google Scholar 

  • Harikishore, D., Reddy, K., Lee, S. M., & Seshaiah, K. (2012). Biosorption of toxic heavy metal ions from water environment using honeycomb biomass—an industrial waste material. Water, Air, and Soil Pollution, 223, 5967–5982.

    Article  CAS  Google Scholar 

  • Hermana, J., & Nurhayati, E. (2010). Removal of Cr3+ and Hg2+ using compost derived from municipal solid waste. Sustainable Environment Research, 20(4), 257–261.

    CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Porter, J. F., & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air, and Soil Pollution, 141, 1–33.

    Article  CAS  Google Scholar 

  • Keskinkan, O., Goksu, M. Z. L., Yuceer, A., Basibuyuk, M., & Forster, C. F. (2003). Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 39, 179–183.

    Article  CAS  Google Scholar 

  • Keskinkan, O., Goksu, M. Z. L., Yuceer, A., & Basibuyuk, M. (2007). Comparison of the adsorption capabilities of Myriophyllum spicatum and Ceratophyllum demersum for zinc, copper and lead. Engineering in Life Sciences, 7(2), 192–196.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of solute substances. Kungliga Sevenska Vetenskapasakademiens Handlingar, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1361–1403.

  • Lesage, E., Mundia, C., Rousseau, D. P. L., Van de Moortel, A. M. K., Du Laing, G., Meers, E., Tack, F. M. G., De Pauw, N., & Verloo, M. G. (2007). Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecological Engineering, 30(4), 320–325.

    Article  Google Scholar 

  • McBride, M. B. (1994). Environmental Chemistry of Soils. New York: Oxford University Press.

    Google Scholar 

  • Milojković, J. V., Mihajlović, M. L., Stojanović, M. D., Lopičić, Z. R., Petrović, M. S., Šoštarić, T. D., & Ristić, M. Đ. (2013). Pb(II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study. Journal of Chemical Technology and Biotechnology, doi: 10.1002/jctb.4184.

  • Minceva, M., Markovska, L., & Meshko, V. (2007). Removal of Zn2+, Cd2+ and Pb2+ from binary aqueous solution by natural zeolite and granulated activated carbon. Macedonian Journal of Chemistry and Chemical Engineering, 26(2), 125–134.

    CAS  Google Scholar 

  • Munagapati, V. S., Yarramuthi, V., Nadavala, S. K., Alla, S. R., & Abburi, K. (2010). Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: kinetics, equilibrium and thermodynamics. Chemical Engineering Journal, 157, 357–365.

    Article  CAS  Google Scholar 

  • Nightingale, E. R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. Journal of Physical Chemistry, 63, 1381–1387.

    Article  CAS  Google Scholar 

  • Paradelo, R., & Barral, M. T. (2012). Evaluation of the potential capacity as biosorbents of two MSW composts with different Cu, Pb and Zn concentrations. Bioresource Technology, 104, 810–813.

    Article  CAS  Google Scholar 

  • Patrón-Prado, M., Acosta-Vargas, B., Serviere-Zaragoza, E., & Méndez-Rodríguez, L. C. (2010). Copper and cadmium biosorption by dried seaweed Sargassum sinicola in saline wastewater. Water, Air, and Soil Pollution, 210, 197–202.

    Article  CAS  Google Scholar 

  • Qaiser, S., Saleemi, A. R., & Umar, M. (2009). Biosorption of lead from aqueous solution by Ficus religiosa leaves: batch and column study. Journal of Hazardous Materials, 166, 998–1005.

    Article  CAS  Google Scholar 

  • Rubinson, K. A., & Rubinson, J. F. (2001). Aná lisis Instrumental. Madrid: Prentice-Hall.

    Google Scholar 

  • Sharma, R. K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66, 258–266.

    Article  CAS  Google Scholar 

  • Sips, R. (1948). On the structure of a catalyst surface. Journal of Physical Chemistry, 16, 490–495.

    Article  CAS  Google Scholar 

  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies: tables and charts. London: John Wiley and Sons ltd.

    Google Scholar 

  • Wahab, M. A., Jellali, S., & Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresource Technology, 101, 5070–5075.

    Article  CAS  Google Scholar 

  • Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226.

    Article  CAS  Google Scholar 

  • Wang, T. C., Weissman, J. C., Ramesh, G., Varadarajan, R., & Benemann, J. R. (1996). Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology, 57, 779–786.

    Article  CAS  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division-American Society of Civil Engineers, 89, 31–60.

    Google Scholar 

  • Witek-Krowiak, A. (2012). Analysis of temperature-dependent biosorption of Cu2+ ions on sunflower hulls: kinetics, equilibrium and mechanism of the process. Chemical Engineering Journal, 192, 13–20.

    Article  CAS  Google Scholar 

  • Wulfsberg, G. (1987). Principles of descriptive chemistry. Monterey CA: Brooks/Cole Publishing.

    Google Scholar 

  • Yan, C., Li, G., Xue, P., Wei, Q., & Li, Q. (2010). Competitive effect of Cu(II) and Zn(II) on the biosorption of lead(II) by Myriophyllum spicatum. Journal of Hazardous Materials, 179, 721–728.

    Article  CAS  Google Scholar 

  • Zhang, M. (2011). Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chemical Engineering Journal, 172, 361–368.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is a part of the project Technological Development 31003: “Development of technologies and products based on mineral raw materials and waste biomass for protection of natural resources for safe food production” which is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena V. Milojković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milojković, J.V., Stojanović, M.D., Mihajlović, M.L. et al. Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions. Water Air Soil Pollut 225, 1927 (2014). https://doi.org/10.1007/s11270-014-1927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1927-8

Keywords

Navigation