Skip to main content

Advertisement

Log in

Effects of Climate, Land Management, and Sulfur Deposition on Soil Base Cation Supply in National Forests of the Southern Appalachian Mountains

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Forest soils having low exchangeable calcium (Ca) and other nutrient base cation (BC) reserves may induce nutrient deficiencies in acid-sensitive plants and impact commercially important tree species. Past and future depletion of soil BC in response to acidic sulfur (S) deposition, forest management, and climate change alter the health and productivity of forest trees. This study used a process model (Model of Acidification of Groundwater in Catchments [MAGIC]) to address a number of questions related to soil BC status for a group of 65 streams and their watersheds in the southern Blue Ridge physiographic province of the southern Appalachian Mountains. Future S deposition to the study watersheds used for the Base Scenario was specified according to proposed reductions in S emissions at the time of this study, representing a reduction of 42 % of ambient S deposition by 2020. Twenty additional simulations were considered, reflecting four alternate S deposition scenarios (6 %, 58 %, 65 %, and 78 % reduction), and various changes in timber harvest, temperature, and precipitation. Base Scenario soil exchangeable Ca and % base saturation showed decreasing trends from 1860 to 2100. Changes in tree harvesting had the largest effect on stream sum of base cations (SBC) and soil BC supply. Each of the scenario projections indicated that median year 2100 soil exchangeable Ca will be at least 20 % lower than pre-industrial values. The simulations suggested that substantial mass loss of soil BC has already occurred since pre-industrial times. Nearly the same magnitude of BC loss is expected to occur over the next 145 years, even under relatively large additional future reductions in S deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker, J. P., Bernard, D. P., Christensen, S. W., & Sale, M. J. (1990a). Biological effects of changes in surface water acid–base chemistry. Washington DC: National Acid Precipitation Assessment Program.

    Google Scholar 

  • Baker, L. A., Kauffman, P. R., Herlihy, A. T., & Eilers, J. M. (1990b). Current status of surface water acid–base chemistry. State of Science/Technology Report 9. Washington, DC: National Acid Precipitation Assessment Program.

    Google Scholar 

  • Cho, Y., Driscoll, C. T., Johnson, C. E., & Siccama, T. G. (2010). Chemical changes in soil and soil solution after calcium silicate addition to a northern hardwood forest. Biogeochemistry, 100, 3–20.

    Article  CAS  Google Scholar 

  • Cosby, B. J., Jenkins, A., Ferrier, R. C., Miller, J. D., & Walker, T. A. B. (1990). Modelling stream acidification in afforested catchments: long-term reconstructions at two sites in central Scotland. Journal of Hydrology, 120, 143–162.

    Article  CAS  Google Scholar 

  • Cosby, B. J., Wright, R. F., & Gjessing, E. (1995). An acidification model (MAGIC) with organic acids evaluated using whole-catchment manipulations in Norway. Journal of Hydrology, 170, 101–122.

    Article  Google Scholar 

  • Cosby, B. J., Norton, S. A., & Kahl, J. S. (1996). Using a paired catchment manipulation experiment to evaluate a catchment-scale biogeochemical model. Science of the Total Environment, 183, 49–66.

    Article  CAS  Google Scholar 

  • Côtè, B., Hendershot, W. J., & O'Halloran, I. P. (1993). Response of declining sugar maple to seven types of fertilization in southern Quebec: growth and nutrient status. In R. F. Huettl & D. Mueller-Dombois (Eds.), Forest decline in the Atlantic and Pacific region (pp. 162–174). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Driscoll, C. T., Lehtinen, M. D., & Sullivan, T. J. (1994). Modeling the acid–base chemistry of organic solutes in Adirondack, New York, lakes. Water Resources Research, 30, 297–306.

    Article  CAS  Google Scholar 

  • Elias, P. E., Burger, J. A., & Adams, M. B. (2009). Acid deposition effects on forest composition and growth on the Monongahela National Forest, West Virginia. Forest Ecology and Management, 258, 2175–2182.

    Article  Google Scholar 

  • Elliott, K. J., Vose, J. M., Knoepp, J. D., Johnson, D. W., Swank, W. J., & Jackson, W. (2008). Simulated effects of sulfur deposition on nutrient cycling in Class I Wilderness Areas. Journal of Environmental Quality, 37, 1419–1431.

    Article  CAS  Google Scholar 

  • Elliott, K. J., Knoepp, J. D., Vose, J. M., & Jackson, W. A. (2013). Interacting effects of wildfire severity and liming on nutrient cycling in a southern Appalachian wilderness area. Plant and Soil. doi:10.1007/s11104-012-1416-z.

    Google Scholar 

  • Elwood, J. W., Sale, M. J., Kaufmann, P. R., & Cada, G. F. (1991). The Southern Blue Ridge Province. In D. F. Charles (Ed.), Acidic deposition and aquatic ecosystems: regional case studies (pp. 319–364). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Flannigan, M. D., Stocks, B. J., & Wotton, B. M. (2000). Climate change and forest fires. Science of the Total Environment, 262, 221–229.

    Article  CAS  Google Scholar 

  • Gholz, H. L., Vogel, S. A., Cropper, W. P., Jr., McKelvey, K., Ewel, K. C., Teskey, R. O., et al. (1991). Dynamics of canopy structure and light interception in Pinus elliottii stands, North Florida. Ecological Monographs, 61, 33–51.

    Article  Google Scholar 

  • Greaver, T. L., Sullivan, T. J., Herrick, J. D., Barber, M., Baron, J. S., Cosby, B. J., et al. (2012). Ecological effects of nitrogen and sulfur air pollution in the US: what do we know? Frontiers in Ecology and the Environment. doi:10.1890/110049.

    Google Scholar 

  • Grier, C. C., Lee, K. M., Nadkarni, N. M., Klock, G. O., & Edgerton, P. J. (1989). Productivity of forests of the United States and its relation to soil and site factors and management practices: a review. Portland, OR: USDA Forest Service, Pacific Northwest Research Station.

    Google Scholar 

  • Halman, J. M., Schaberg, P. G., Hawley, G. J., & Eagar, C. (2008). Calcium addition at the Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity and cold tolerance in native red spruce (Picea rubens). Tree Physiology, 28, 855–862.

    Article  CAS  Google Scholar 

  • Halman, J. M., Schaberg, P. G., Hawley, G. J., & Hansen, C. F. (2011). Potential role of soil calcium in recovery of paper birch following ice storm injury in Vermont, USA. Forest Ecology and Management, 261, 1539–1545.

    Article  Google Scholar 

  • Hanson, P. J., & Weltzin, J. F. (2000). Drought disturbance from climate change: response of United States forests. Science of the Total Environment, 262, 205–220.

    Article  CAS  Google Scholar 

  • Högberg, P., Fan, H., Quist, M., Binkleys, D., & Oloftamm, C. (2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489–499.

    Article  Google Scholar 

  • Hornberger, G. M., Cosby, B. J., & Wright, R. F. (1989). Historical reconstructions and future forecasts of regional surface water acidification in southernmost Norway. Water Resource Research, 25, 2009–2018.

    Article  CAS  Google Scholar 

  • Huettl, R. F. (1989). Liming and fertilization as mitigation tools in declining forest ecosystems. Water, Air, & Soil Pollution, 44, 93–118.

    Article  CAS  Google Scholar 

  • Huettl, R. F., & Zoettl, H. W. (1993). Liming as a mitigation tool in Germany's declining forests — reviewing results from former and recent trials. Forest Ecology and Management, 61, 325–338.

    Article  Google Scholar 

  • Huntington, T. G. (2000). The potential for calcium depletion in forest ecosystems of southeastern United States: review and analysis. Global Biogeochemical Cycles, 14, 623–638.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: the physical science basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, et al. (Eds.), Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Iverson, L. R., Prasad, A. M., Matthews, S. N., & Peters, M. (2008). Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 254, 390–406.

    Google Scholar 

  • Jenkins, A., Cosby, B. J., Ferrier, R. C., Walker, T. A. B., & Miller, J. D. (1990). Modelling stream acidification in afforested catchments: an assessment of the relative effects of acid deposition and afforestation. Journal of Hydrology, 120, 163–181.

    Article  CAS  Google Scholar 

  • Johnson, D. W., Lindberg, S. E., Van Miegroet, H., Lovett, G. M., Cole, D. W., Mitchell, M. J., et al. (1993). Atmospheric deposition, forest nutrient status, and forest decline: implications of the Integrated Forest Study. In R. F. Huettl & D. Mueller-Dombois (Eds.), Forest decline in the Atlantic and Pacific region (pp. 66–81). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Johnson, D. W., Susfalk, R. B., Brewer, P. F., & Swank, W. T. (1999). Simulated effects of reduced sulfur, nitrogen, and base cation deposition on soils and solutions in southern Appalachian forests. Journal of Environmental Quality, 28, 1336–1346.

    Article  CAS  Google Scholar 

  • Jonasson, S., Michelsen, A., Schmidt, I. K., Nielsen, E. V., & Callaghan, T. V. (1996). Microbial biomass C, N. and P in two arctic soils after perturbations simulating climate change. Oecologia, 95, 179–186.

    Article  Google Scholar 

  • Karl, T. R., Melillo, J. M., & Peterson, T. C. (Eds.). (2009). Global climate change impacts in the United States. New York: Cambridge University Press.

    Google Scholar 

  • Kloeppel, B. D., Clinton, B. D., Vose, J. M., & Cooper, A. R. (2003). Drought impacts on tree growth and mortality of Southern Appalachian forests. In D. Greenland, D. G. Goodin, & R. C. Smith (Eds.), Variability and ecosystem response at long-term ecological research sites (pp. 43–55). New York: Oxford University Press.

    Google Scholar 

  • Kreutzer, K. (1995). Effects of forest liming on soil processes. Plant and Soil, 168–169, 447–470.

    Article  Google Scholar 

  • Lepistö, A., Whitehead, P. G., Neal, C., & Cosby, B. J. (1988). Modelling the effects of acid deposition: estimation of long term water quality responses in forested catchments in Finland. Nordic Hydrology, 19, 99–120.

    Google Scholar 

  • Long, R. P., Horsley, S. B., & Lilja, P. R. (1997). Impact of forest liming on growth and crown vigor of sugar maple and associated hardwoods. Canadian Journal of Forest Research, 27, 1560–1573.

    Article  CAS  Google Scholar 

  • Long, R. P., Horsley, S. B., & Hall, T. J. (2011). Long-term impact of liming on growth and vigor of northern hardwoods. Canadian Journal of Forest Research, 41, 1295–1307.

    Article  Google Scholar 

  • Lovett, G. M., Tear, T. H., Evers, D. C., Findlay, S. E. G., Cosby, B. J., Dunscomb, J. K., et al. (2009). Effects of air pollution on ecosystems and biological diversity in the eastern United States. Annals of the New York Academy of Sciences, 1162, 99–135.

    Article  CAS  Google Scholar 

  • Mattson, W. J., & Haack, R. A. (1987). The role of drought in outbreaks of plant-eating insects. BioScience, 337, 110–118.

    Article  Google Scholar 

  • McNulty, S. G., & Boggs, J. L. (2010). A conceptual framework: Redefining forest soil's critical acid loads under a changing climate. Environmental Pollution, 158, 2053–2058.

    Article  CAS  Google Scholar 

  • McNulty, S. G., Cohen, E. C., Myers, J. A. M., Sullivan, T. J., & Li, H. (2007). Estimates of critical acid loads and exceedances for forest soils across the conterminous United States. Environmental Pollution, 149, 281–292.

    Article  CAS  Google Scholar 

  • Mitchell, J. F. B., Manabe, S., Mlesho, V., & Tokioka, T. (1990). Equilibrium climate change – and its implications for future. In J. T. Houghton, G. T. Jenkins, & J. J. Ephaums (Eds.), Climate change (pp. 131–175). Cambridge: Cambridge University Press.

    Google Scholar 

  • Moldan, F., & Wright, R. F. (1998). Changes in runoff chemistry after five years of N addition to a forested catchment at Gårdsjön, Sweden. Forest Ecology and Management, 101, 187–197.

    Article  Google Scholar 

  • Moore, J. D., & Ouimet, R. (2010). Effects of two Ca fertilizer types on sugar maple vitality. Canadian Journal of Forest Research, 40, 1985–1992.

    Article  CAS  Google Scholar 

  • National Acid Precipitation Assessment Program (NAPAP). (1991). Integrated assessment report. Washington, DC: National Acid Precipitation Assessment Program.

    Google Scholar 

  • Natural Resources Conservation Service (NRCS) Soil Survey Staff. (2010). United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for North Carolina. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed 11/4/2010.

  • Nohrstedt, H.-Ö. (2002). Effects of liming and fertilization (N, PK) on chemistry and nitrogen turnover in acidic forest soils in SW Sweden. Water, Air, & Soil Pollution, 139, 343–354.

    Article  CAS  Google Scholar 

  • Pabian, S. E., & Brittingham, M. C. (2007). Terrestrial liming benefits birds in an acidified forest in the Northeast. Ecological Applications, 17(8), 2184–2194.

    Article  Google Scholar 

  • Pabian, S. E., Rummel, S. M., Sharpe, W. E., & Brittingham, M. C. (2012). Terrestrial liming as a restoration technique for acidified forest ecosystems. International Journal of Forestry Research, 2012. doi:10.1155/2012/976809.

  • Rosenberg, N. J., Kimball, B. A., Martin, P., & Cooper, C. F. (1990). From climate and CO2 enrichment to evapotranspiration. In P. E. Waggoner (Ed.), Climate and U.S. water resources (pp. 151–175). New York: Wiley.

    Google Scholar 

  • Rosenbrock, H. H. (1960). An automatic method for finding the greatest or least value of a function. Computer Journal, 3, 175–184.

    Article  Google Scholar 

  • Schaberg, P. G., Tilley, J. W., Hawley, G. J., DeHayes, D. H., & Bailey, S. W. (2006). Associations of calcium and aluminum with the growth and health of sugar maple trees in Vermont. Forest Ecology and Management, 223, 159–169.

    Article  Google Scholar 

  • Shannon, J. D. (1998). Calculation of trends from 1900 through 1990 for sulfur and NOx-N deposition concentrations of sulfate and nitrate in precipitation, and atmospheric concentrations of SOx and NOx species over the southern Appalachians. Report prepared for the Southern Appalachian Mountains Initiative, Asheville, NC.

  • Sharpe, W. E., & Voorhees, C. R. (2006). Effects of lime, fertilizer, and herbicide on herbaceous species diversity and abundance following red oak shelterwood harvest. In D. S. Buckley & W. K. Clatterbuck (Eds.), Proceedings 15th Central Hardwood Forest conference, Knoxville, TN, February 27–March 1, 2006. General rechnical report SRS–101 (pp. 702–708). Asheville, NC: USDA Forest Station, Southern Research Station.

    Google Scholar 

  • Sullivan, T. J., & McDonnell, T. C. (2012). Application of critical loads and ecosystem services principles to assessment of the effects of atmospheric sulfur and nitrogen deposition on acid-sensitive aquatic and terrestrial resources. Pilot case study: Central Appalachian Mountains (Report prepared for the U.S. Environmental Protection Agency, in association with Systems Research and Applications Corporation). Corvallis, OR: E&S Environmental Chemistry, Inc.

    Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Driscoll, C. T., Charles, D. F., & Hemond, H. F. (1996). Influence of organic acids on model projections of lake acidification. Water, Air, & Soil Pollution, 91, 271–282.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Webb, J. R., Snyder, K. U., Herlihy, A. T., Bulger, A. J., et al. (2002a). Assessment of the effects of acidic deposition on aquatic resources in the Southern Appalachian Mountains. Corvallis, OR: E&S Environmental Chemistry, Inc.

    Google Scholar 

  • Sullivan, T. J., Johnson, D. W., & Munson, R. (2002b). Assessment of effects of acid deposition on forest resources in the Southern Appalachian Mountains. Report prepared for the Southern Appalachian Mountains Initiative (SAMI). Corvallis, OR: E&S Environmental Chemistry, Inc.

    Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Herlihy, A. T., Webb, J. R., Bulger, A. J., Snyder, K. U., et al. (2004). Regional model projections of future effects of sulfur and nitrogen deposition on streams in the southern Appalachian Mountains. Water Resources Research, 40, W02101 doi:10.1029/2003WR001998.

  • Sullivan, T. J., Webb, J. R., Snyder, K. U., Herlihy, A. T., & Cosby, B. J. (2007). Spatial distribution of acid-sensitive and acid-impacted streams in relation to watershed features in the southern Appalachian mountains. Water, Air, & Soil Pollution, 182, 57–71.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Webb, J. R., Dennis, R. L., Bulger, A. J., & Deviney, F. A., Jr. (2008). Streamwater acid–base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia. Environmental Monitoring and Assessment, 137, 85–99.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Jackson, B., Snyder, K. U., & Herlihy, A. T. (2011). Acidification and prognosis for future recovery of acid-sensitive streams in the Southern Blue Ridge Province. Water, Air, and Soil Pollution, 219, 11–26.

    Article  CAS  Google Scholar 

  • Turner, R. S., Cook, R. B., van Miegroet, H., Johnson, D. W., Elwood, J. W., Bricker, O. P., et al. (1990). Watershed and lake processes affecting chronic surface water acid–base chemistry. State of the Science, SOS/T 10. Washington DC: National Acid Precipitation Assessment Program.

    Google Scholar 

  • Wilmot, T. R., Ellsworth, D. S., & Tyree, M. T. (1996). Base cation fertilization and liming effects on nutrition and growth of Vermont sugar maple stands. Forest Ecology and Management, 84, 123–134.

    Article  Google Scholar 

  • Wright, R. F., & Cosby, B. J. (1987). Use of a process-oriented model to predict acidification at manipulated catchments in Norway. Atmospheric Environment, 21, 727–730.

    Article  CAS  Google Scholar 

  • Wright, R. F., Cosby, B. J., Ferrier, R. C., Jenkins, A., Bulger, A. J., & Harriman, R. (1994). Changes in the acidification of lochs in Galloway, southwestern Scotland, 1979–1988: the MAGIC model used to evaluate the role of afforestation, calculate critical loads, and predict fish status. Journal of Hydrology, 161, 257–285.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by the USDA Forest Service, through a contract to E&S Environmental Chemistry, Inc. This manuscript has not been subjected to agency review, and no official endorsement is implied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. McDonnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonnell, T.C., Sullivan, T.J., Cosby, B.J. et al. Effects of Climate, Land Management, and Sulfur Deposition on Soil Base Cation Supply in National Forests of the Southern Appalachian Mountains. Water Air Soil Pollut 224, 1733 (2013). https://doi.org/10.1007/s11270-013-1733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1733-8

Keywords

Navigation