Skip to main content

Advertisement

Log in

Methods for Extracting Heavy Metals in Soils from the Southwestern Amazon, Brazil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Heavy metals occur naturally in soil, at concentrations that depend on the parent material from which the soil was formed, the processes of formation, and the composition and the proportion of the components of its solid phase. Quantifying these concentrations is important for environmental studies of soil contamination and pollution, and choosing the methods for doing so is a key step in establishing heavy metal contents in soil samples. We evaluated two digestion methods (aqua regia and EPA 3051, both microwave oven-assisted) for assessing pseudo-total concentrations of Cd, Co, Cr, Cu, Ni, Pb and Zn in the surface layer (0–20 cm) of soil samples from the Brazilian agricultural frontier in the southwestern Amazon. Nineteen composite samples of the most representative soil classes for the states of Mato Grosso and Rondônia were collected under native vegetation undisturbed by human intervention. Canonical discriminant analysis and principal component analysis were used for multivariate exploration of the data. Aqua regia extracted higher amounts of Co, Ni, Pb, and Zn than EPA 3051, while levels of Cr and Cu did not differ between methods. In general, aqua regia recovered more of the metals when compared to reference soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu, M.F., Andrade, J.C., Falcão, A.A. (2006). In J. C. Andrade, M. F. Abreu. Protocols chemical analyses (pp. 121–158). São Paulo: Campinas Agronomic Institute. (in Portuguese).

  • Akker, A. H., & Delft, W. (1991). Comparison of microwave and conventional extraction techniques for the determination of metal in soil, sediment and sludge sample by atomic spectrometry. Analyst, 116, 347–351.

    Article  Google Scholar 

  • Alloway, B. J. (1990). Heavy metals in soils. Glasgow: Blackie Academic & Professional.

    Google Scholar 

  • Anderson, J. M., & Ingram, J. S. I. (1992). Tropical soil biology and fertility: A handbook of methods. Wallingford, CT: CAB International.

    Google Scholar 

  • Baize, D., & Sterckeman, T. (2001). Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Science of the Total Environment, 264, 127–139.

    Article  CAS  Google Scholar 

  • Baretta, D., Santos, J. C. P., Figueiredo, S. R., & Klauberg-Filho, O. (2005). Effects of native pasture burning and Pinus monoculture on changes in soil biological attributes on the Southern Plateau of Santa Catarina – Brazil. Revista Brasileira de Ciência do Solo, 29, 715–724 (in Portuguese with English abstract).

    Article  Google Scholar 

  • Bini, C., Sartori, G., Wahsha, M., & Fontana, S. (2011). Background levels of trace elements and soil geochemistry at regional level in NE Italy. Journal of Geochemical Exploration, 109, 125–133.

    Article  CAS  Google Scholar 

  • Biondi, C. M. (2010). Background concentrations of heavy metals in benchmark soils of Pernambuco State, Brazil. 2010. Thesis, Universidade Federal Rural de Pernambuco, Recife, PE. (in Portuguese with English abstract).

  • Caires, S. M. (2009). Determination of natural heavy metals levels in soils of Minas Gerais State to help definition of background levels. 2009. Thesis, Universidade Federal de Viçosa,Viçosa, p. 64 (in Portuguese with English abstract).

  • Campos, M. L., Pierangeli, M. A. P., Guilherme, L. R. G., Marques, J. J., & Curi, N. (2003). Baseline concentration of heavy metals in Brazilian Latosols. Communications in Soil Science and Plant Analysis, 34, 547–557.

    Article  CAS  Google Scholar 

  • Chander, K., Hartmann, G., Joergensen, R. G., Khan, K. S., & Lamersdorf, N. (2008). Comparison of methods for measuring heavy metals and total phosphorus in soils contaminated by different sources. Archives of Agronomy and Soil Science, 54, 413–422.

    Article  CAS  Google Scholar 

  • Chen, M., & Ma, L. Q. (1998). Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida Soils. Journal of Environmental Quality, 27, 1294–1300.

    Article  CAS  Google Scholar 

  • Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65, 491–499.

    Article  CAS  Google Scholar 

  • Costa, A. C. S., Krug, F. J., Oliveira, E., Nóbrega, J. A., Matias, T. B. (2008). Solubilization and decomposition of inorganic solids. In: KRUG, F. J. (Ed). Methods of sample preparation; Fundamentals of sample preparation for organic and inorganic elemental analysis pp. 140–216. Piracicaba.

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Competitive sorption and desorption of heavy metals by individual soil components. Journal of Hazardous Materials, 140, 308–315.

    Article  CAS  Google Scholar 

  • Cruz-Castillo, J. G., Ganeshanandam, S., MacKay, B. R., Lawes, G. S., Lawoko, C. R. O. O., & Woolley, D. J. (1994). Applications of canonical discriminant analysis in horticultural research. HortScience, 29, 1115–1119.

    Google Scholar 

  • Diaz-Barrientos, E., Madrid, L., Cabrera, F., & Contreras, M. C. (1991). Comparison of two methods of sample preparation for determination by atomic absorption spectrophotometry of heavy metals in soils and sediments. Communications in Soil Science and Plant Analysis, 22, 1559–1568.

    Article  CAS  Google Scholar 

  • dos Santos, S. N., & Alleoni, L. R. F. (2012). Reference values for heavy metals in soils of the Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment. doi:10.1007/s10661-012-2980-7.

  • Florian, D., Barnes, R. M., & Knapp, G. (1998). Comparison of microwave-assisted acid leaching techniques for the determination of heavy metals in sediments, soils, and sludges. Fresenius' Journal of Analytical Chemistry, 362, 558–565.

    Article  CAS  Google Scholar 

  • Fontes, M. P. F., & Weed, S. B. (1991). Iron oxides in selected Brazilian Oxisols: I. Mineralogy. Soil Science Society of America Journal, 55, 1143–1149.

    Article  CAS  Google Scholar 

  • Fontes, M. P. F., Matos, A. T., & Neves, J. C. L. (2000). Competitive adsorption of Zn, Cd, Cu and Pb in three highly weathered Brazilian soil. Communications in Soil Science and Plant Analysis, 31, 2939–2958.

    Article  CAS  Google Scholar 

  • Fortin, D., Leppard, G. G., & Tessier, A. (1993). Characteristics of lacustrine diagenetic iron oxyhydroxides. Geochimica et Cosmochimica Acta, 57, 4391–4404.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Or, D. (2002). Particle-size analysis. In J. H. Dane & G. C. Toop (Eds.), Methods of soil analysis: Part 4. Physical methods. Madison, WI: Soil Sci Am Inc.

    Google Scholar 

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends in Analytical Chemistry, 21, 451–467.

    Article  CAS  Google Scholar 

  • Goldschmidt, V. M. (1958). Geochemistry. London: Oxford University Press.

    Google Scholar 

  • Grotti, M., Ianni, C., & Frache, R. (2002). Inductively coupled plasma optical emission spectrometric determination of trace elements in sediments after sequential selective extraction: effects of reagents and major elements on the analytical signal. Talanta, 57, 1053–1066.

    Article  CAS  Google Scholar 

  • Jassie, L. B., & Kingston, H. M. (1988). Introduction to microwave acid decomposition. In H. M. Kingston & L. B. Jassie (Eds.), Introduction to microwave sample preparation: Theory and practice (pp. 1–6). Washington: ACS.

    Google Scholar 

  • Lee, B. D., Carter, B. J., Basta, N. T., & Weaver, B. (1997). Factors influencing heavy metal distribution in six Oklahoma benchmark soils. Soil Science Society of America Journal, 61, 218–233.

    Article  CAS  Google Scholar 

  • Loeppert, R. L., & Inskeep, W. P. (1996). Iron. In J. M. Bigham (Ed.), Methods of soil analysis. Madison, WI: Soil Science Society of America; American Society of Agronomy.

    Google Scholar 

  • Maia, S. M. F., Ogle, F. M., Cerri, C. E. P., & Cerri, C. C. (2009). Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma, 149, 84–91.

    Article  CAS  Google Scholar 

  • Mcgrath, S., & Cunliffe, C. H. (1985). A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges. Journal of the Science of Food and Agriculture, 36, 794–798.

    Article  CAS  Google Scholar 

  • Mckenzie, R. M. (1979). Proton release during adsorption of heavy metal ions by a hydrous manganese dioxide. Geochemicha Cosmochimica Acta, 43, 1855–1857.

    Article  CAS  Google Scholar 

  • Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH 4 by North Carolina soil testing laboratories. Raleigh: University of North Carolina.

    Google Scholar 

  • Mehra, J. A., & Jackson, M. L. (1960). Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327.

    Article  Google Scholar 

  • Mello, F. F. C. (2007). Estimates of soil carbon stocks for Rondônia and Mato Grosso states previously to anthropic intervention. Thesis, University of Sao Paulo (ESALQ/USP), pp. 89. (in Portuguese with English Abstract).

  • Conselho Nacional do Meio Ambiente (2009). Resolution N° 420 of December 28, 2009. Provides guiding values and criteria of soil quality for the presence of chemicals and establishes guidelines for environmental management of areas contaminated by these substances as a result of anthropogenic activities. Brasília. Available in: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620. Accessed: Jun 5, 2011 (in Portuguese).

  • Mekaru, T., & Uehara, G. (1972). Anion adsorption in ferrugineous tropical soils. Proceedings - Soil Science Society of America, 36, 296–300.

    Article  CAS  Google Scholar 

  • MINEROPAR. Paraná Minerals S. A. (2005). Geochemical soil - Horizon B: Realtório Final Project. Curitiba: MINEROPAR.

  • National Institute of Standards and Technology – NIST (2002). Standard Reference Materials -SRM 2709, 2710 and 2711Addendum Issue Date: 18 Jan.

  • Nemati, K., Kartini, N., Bakar, A., Bin, A., Elham, S., & Kah, H. L. (2010). Comparative study on open system digestion and microwave assisted digestion methods for metal determination in shrimp sludge compost. Journal of Hazardous Materials, 182(2010), 453–459.

    Article  CAS  Google Scholar 

  • Nieuwenhuize, J. C. H., Poley-Vos, A. H., Akker, V., & Van Delft, W. (1991). Comparison of microwave and conventional extraction techniques for the determination of metals in soil. sediment and sludge samples by atomic spectrometry. Analyst, 116, 347–351.

    Article  CAS  Google Scholar 

  • Oliveira, S. A., Tavares, S. R. L., Mahler, C. F. (2008). Evaluation of different methods of extraction of heavy metals in contaminated soils from electroplating activities. In: FERTBIO (in Portuguese).

  • Paye, H. S., Mello, J. W. V., Abrahão, W. A. P., Filho, E. I. F., Dias, L. C. P., Castro, M. L. O., Melo, S. B., & França, M. M. (2010). Reference quality values for heavy metals in soils from Espírito Santo State, Brazil. Revista Brasileira de Ciência do Solo, 34, 2041–2051 (in Portuguese with English abstract).

    Article  Google Scholar 

  • Pérez, D. V., Saldanha, M. F. C., Meneguelli, N. A., Moreira, J. C., & Vaitsman, D. S. (1997). Geochemistry of some Brazilian soils. National Research Center for Solos (CNPS), 4, 1–14.

    Google Scholar 

  • Quevauviller, P. (2002). Operationally-defined extraction procedures for soil and sediment analysis: Part 3. New CRMs for trace-element extractable contents. Trends in Analytical Chemistry, 21, 774–785.

    Article  CAS  Google Scholar 

  • Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46, 449–455.

    Article  CAS  Google Scholar 

  • Reimann, C., Siewers, U., Tarvainen, T., Bityukova, L., Eriksson, J., Gilucis, A., Gregorauskiene, V., Lukashev, V., Matinian, N. N., & Pasieczna, A. (2000). Baltic soil survey: total concentrations of major and selected trace elements in arable soils from 10 countries around the Baltic Sea. Science of the Total Environment, 257, 155.

    Article  CAS  Google Scholar 

  • Sakan, S., Dorđević, D., Dević, G., Relić, D., Anđelković, I., & Ðuričić, J. (2011). A study of trace element contamination in river sediments in Serbia using microwave-assisted aqua regia digestion and multivariate statistical analysis. Microchemical Journal, 99, 492–502.

    Article  CAS  Google Scholar 

  • Salonen, V.-P., & Korkka-Niemi, K. (2007). Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Applied Geochemistry, 22, 906–918.

    Article  CAS  Google Scholar 

  • SAS Institute. 2002. SAS user’s guide: Statistics. Version 8.2, 6th ed. Cary: NC

  • Shah, H. M., Iqbal, W., Shaheen, N., Khan, N., Choudhary, M. A., & Akhter, G. (2012). Assessment of background levels of trace metals in water and soil from a remote region of Himalaya. Environmental Monitoring and Assessment, 184, 1243–1252.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry. Chemical equilibria and rates in natural waters (3rd ed.). New York: Wiley.

    Google Scholar 

  • Tam, N. F. Y., & Yao, M. W. Y. (1999). Three Digestion Methods to Determine Concentrations of Cu, Zn, Cd, Ni, Pb, Cr, Mn, and Fe in Mangrove Sediments from Sai Keng, Chek Keng, and Sha Tau Kok, Hong Kong Environ. Contamination and Toxicology, 62, 708–716.

    Article  CAS  Google Scholar 

  • Tessier, A., Fortin, D., Belzile, N., Devitre, R. R., & Leppard, G. G. (1996). Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements. Geochimica et Cosmochimica Acta, 60, 387–404.

    Article  CAS  Google Scholar 

  • Theodoro, V. C. A., Alvarenga, M. I. N., Guimarães, R. J., & Souza, C. A. S. (2003). Chemical changes of a soil under different management forms of coffee plantation. Revista Brasileira de Ciência do Solo, 27, 1039–1047 (in Portuguese with English abstract).

    Article  CAS  Google Scholar 

  • Tighe, M., Lockwood, P., Wilson, S., & Lisle, L. (2004). Comparison of digestion methods for ICP-OES analysis of a wide range of analytes in heavy metal contaminated soil samples with specific reference to arsenic and antimony. Communications in Soil Science and Plant Analysis, 35, 1369–1385.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (1996). Soil screening guidance: Technical background document. Washington DC: EPA, Office of Solid Waste and Emergency Response.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2007a). Microwave assisted acid digestion of sediments, sludges, soils and oils – Method 3050 – SW – 846, 1994a. Available in: http://www.epa.gov/epaosver/hazwaste/test/3050.pdf. Accessed 11 Dec 2010.

  • United States Environmental Protection Agency (USEPA) (2007b). Microwave assisted acid digestion of sediments, sludges, soils and oils – Method 3051 – SW – 846, 1994b. Available in: http://www.epa.gov/epaosver/hazwaste/test/3051.pdf. Accessed 11 Dec 2010.

  • United States Environmental Protection Agency (USEPA) (2007c). Microwave assisted acid digestion of sediments, sludges, soils and oils – Method 3052 – SW – 846, 1994c. Available in: http://www.epa.gov/epaosver/hazwaste/test/3052.pdf. Accessed 11 Dec 2010.

  • Vettori, L. (1969). Methods of Soil Analyses, Division of Pedology and Soil Fertility, Technical Bulletin Nº 7. Ministry of Agriculture. Rio de Janeiro, Brazil, pp. 24. (in Portuguese).

  • Vieira, E. C., Kamogawa, M. Y., Lemos, S. G., Nóbrega, J. A., & Nogueira, A. R. A. (2005). Microwave-assisted decomposition of soil samples: Strategies to avoid formation of insoluble Fluoride salts. Revista Brasileira de Ciência do Solo, 29, 547–553 (in Portuguese with English abstract).

    Article  CAS  Google Scholar 

  • Yokoyama, T., Makishima, A., & Nakamura, E. (1999). Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion. Chemical Geology, 157, 175–187.

    Article  CAS  Google Scholar 

  • Yu, T. R. (1997). Chemistry of variable charge soils. New York: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

To Brazil’s National Council for Scientific and Technological Development (CNPq) for granting a master’s degree scholarship to the first author and a Research Productivity Grant to the second author, and for financial support of the project. To Prof. Carlos Clemente Cerri, of the Center for Nuclear Energy in Agriculture of the University of São Paulo, who kindly provided soil samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Novaes dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, S.N., Alleoni, L.R.F. Methods for Extracting Heavy Metals in Soils from the Southwestern Amazon, Brazil. Water Air Soil Pollut 224, 1430 (2013). https://doi.org/10.1007/s11270-012-1430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1430-z

Keywords

Navigation