Skip to main content
Log in

Performance and Kinetic Study on Bioremediation of Diazo Dye (Reactive Black 5) in Wastewater Using Spent GAC–Biofilm Sequencing Batch Reactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Combinations of sequential anaerobic and aerobic process enhance the treatment of textile wastewater. The aim of this study was to investigate the treatment of diazo dye Reactive Black 5 (RB5)-containing wastewater using granular activated carbon (GAC)–biofilm sequencing batch reactor (SBR) as an integration of aerobic and anaerobic process in a single reactor. The GAC–biofilm SBR system demonstrated higher removal of COD, RB5 and aromatic amines. It was observed that the RB5 removal efficiency improved as the concentration of co-substrate in the influent increased. The alternative aeration introduced into the bioreactor enhanced mineralization of aromatic amines. Degradation of RB5 and co-substrate followed second-order kinetic and the constant (k 2) values for COD and RB5 decreased from 0.002 to 0.001 and 0.004 to 0.001 l/mg h, respectively, as the RB5 concentration increased from 100 to 200 mg/l in the GAC–biofilm SBR system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barragán, B. E., Costa, C., & Márquez, M. C. (2007). Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes and Pigments, 75(1), 73–81.

    Article  Google Scholar 

  • Bra's, R., Ferra, M. I. A., Pinheiro, H. M., & Goncalves, I. C. (2001). Batch test for assessing decolourization of azo dyes by methanogenic and mixed cultures. Journal of Biotechnology, 89, 155–252.

    Article  Google Scholar 

  • Christopher, J., Owen, P. W., & Ajay, S. (2002). Biodegradation of dimethyl phthalate with high removal rates in a packed-bed reactor. World Journal of Microbiology and Biotechnology, 18, 7–10.

    Article  Google Scholar 

  • Clarke, E.A., & Anliker, R. (1980). Organic dyes and pigments. Hand-book of environmental chemistry, anthropogenic compounds. New York.

  • Eltaief, K., Hana, G., Youssef, T., Hassib, B., & Moktar, H. (2008). Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors. Journal of Hazardous Materials, 52(2), 683–689.

    Google Scholar 

  • Haug, W., Schmidt, A., Nörtemam, B., Hempel, D. C., Stolz, A., & Knackmuss, H. J. (1991). Mineralisation of the sulphonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-benzenesulfonate-degrading bacterial consortium. Applied and Environmental Microbiology, 57, 3144–3149.

    CAS  Google Scholar 

  • Işık, M., & Sponza, D. T. (2005). A batch study for assessing the inhibition effect of Direct Yellow 12 in a mixed methanogenic culture. Process Biochemistry, 40, 1053–1062.

    Article  Google Scholar 

  • Kapdan, I. K., & Alparslan, S. (2005). Application of anaerobic–aerobic sequential treatment system to real textile wastewater for color and COD removal. Enzyme and Microbial Technology, 36(2–3), 273–279.

    Article  CAS  Google Scholar 

  • Kapdan, I. K., & Kargi, F. (2002). Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contractor. Enzyme and Microbial Technology, 30, 195–199.

    Article  CAS  Google Scholar 

  • Kudlich, M., Bishop, P. L., Knackmuss, H. J., & Stolz, A. (1996). Simultaneous anaerobic and aerobic degradation of the sulfonated azo dye Mordant Yellow 3 by immobilized cells from a naphthalenesulfonate-degrading mixed culture. Applied and Environmental Microbiology, 46, 597–603.

    CAS  Google Scholar 

  • Lu, X., Yang, B., Chen, J., & Sun, R. (2009). Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process. Journal of Hazardous Materials, 161, 241–245.

    Article  CAS  Google Scholar 

  • Manu, B., & Chaudhari, S. (2002). Anaerobic decolorization of simulated textile wastewater containing azo dyes. Bioresource Technology, 82, 225–231.

    Article  CAS  Google Scholar 

  • Nigam, P., Banat, I.M., Singh, D., Marchant, R. (1996). Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 31(5), 435–442.

    Google Scholar 

  • Ong, S. A., Toorisaka, E., Hirata, M., & Hano, T. (2005a). Treatment of azo dye Orange II in a sequential anaerobic and aerobic-sequencing batch reactor system. Environmental Chemistry Letters, 2(4), 203–207.

    Article  CAS  Google Scholar 

  • Ong, S. A., Toorisaka, E., Hirata, M., & Hano, T. (2005b). Decolorization of azo dye (Orange II) in a sequential UASB-SBR system. Separation and Purification Technology, 42(3), 297–302.

    Article  CAS  Google Scholar 

  • Ong, S. A., Toorisaka, E., Hirata, M., & Hano, T. (2008). Granular activated carbon–biofilm configured sequencing batch reactor treatment of C.I. Acid Orange 7. Dyes and Pigments, 76(1), 142–146.

    Article  Google Scholar 

  • Osman, G., Aysenur, K., & Sadik, D. (2006). The reuse of dried activated sludge for adsorption of reactive dye. Journal of Hazardous Materials, 134(1–3), 190–196.

    Google Scholar 

  • Rajaguru, R., Kalaiselvi, K., Palamivel, M., & Subburam, V. (2000). Biodegradation of azo dyes in a sequential anaerobic–aerobic system. Applied Microbiology and Biotechnology, 54, 268–273.

    Article  CAS  Google Scholar 

  • Sandhaya, S., Padmavathy, S., Swaminathan, K., Subrahmanyam, Y. V., & Kaul, S. N. (2005). Microaerophilic–aerobic sequential batch reactor for treatment of azo dyes containing simulated wastewater. Process Biochemistry, 40, 885–890.

    Article  Google Scholar 

  • Sarioglu, M., & Bisgin, T. (2007). Removal of Maxilon Yellow GL in a mixed methanogenic anaerobic culture. Dyes and Pigments, 75(3), 544–549.

    Article  CAS  Google Scholar 

  • Schreiber, M. E., & Bahr, J. M. (2002). Nitrate-enhanced bioremediation of BTEX-contaimnated ground water: parameter estimation from natural gradient tracer experiments. Journal of Contaminant Hydrology, 55, 2–56.

    Article  Google Scholar 

  • Sponza, D. T., & Isik, M. (2002). Decolorization and azo dye degradation by anaerobic/aerobic sequential process. Enzyme and Microbial Technology, 31, 102–110.

    Article  CAS  Google Scholar 

  • Sponza, D. T., & Isik, M. (2004). Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge. Enzyme and Microbial Technology, 34(2), 147–158.

    Article  CAS  Google Scholar 

  • Tong, Y., & Bishop, P. L. (1998). Stratification of microbial metabolic processes and redox potential change in an aerobic biofilm studied using microelectrodes. Water Science and Technology, 37(4–5), 195–198.

    Google Scholar 

  • Van der Zee, F. P. (2002). Anaerobic azo dye reduction. Doctoral thesis, Wageningen (p. 142). The Netherlands: Wageningen University.

    Google Scholar 

  • Van der Zee, F. P., & Villaverde, S. (2005). Combined anaerobic–aerobic treatment of azo dyes—A short review of bioreactor studies. Water Research, 39(8), 1425–1440.

    Article  Google Scholar 

  • Van der Zee, F. P., Lettinga, G., & Field, J. A. (2001). Azo dye decolorization by anaerobic granular sludge. Chemosphere, 44, 1169–1176.

    Article  Google Scholar 

  • Wijetunga, S., Xiufen, L., Wenquan, R., & Chen, J. (2008). Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of color and reduction of COD in real textile wastewater. Bioresource Technology, 99, 3692–3699.

    Article  Google Scholar 

  • Yang, P. Y., Nitisoravut, S., & Wu, J. Y. S. (1995). Nitrate removal using a mixed culture entrapped microbial cell immobilization process under high salt conditions. Water Research, 29(6), 1525–1532.

    Article  CAS  Google Scholar 

  • Yang, Q., Li, C., Li, H., Li, Y., & Yu, N. (2009). Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor. Biochemical Engineering Journal, 43(3), 225–230.

    Article  CAS  Google Scholar 

  • Zhou, G. M., & Herbert, H. P. F. (1997). Anoxic treatment of low-strength wastewater by immobilized sludge. Water Science and Technology, 36(12), 135–141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-An Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, SA., Ho, LN., Wong, YS. et al. Performance and Kinetic Study on Bioremediation of Diazo Dye (Reactive Black 5) in Wastewater Using Spent GAC–Biofilm Sequencing Batch Reactor. Water Air Soil Pollut 223, 1615–1623 (2012). https://doi.org/10.1007/s11270-011-0969-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0969-4

Keywords

Navigation