, Volume 24, Issue 15, pp 4403-4443
Date: 28 May 2010

A Stream Water Availability Model of Upper Indus Basin Based on a Topologic Model and Global Climatic Datasets

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Integrated water resources management at river basin scales and evaluation of effects of climate change on regional water resources require quantitative estimates of space-time variability of monthly discharges within a river network. This study demonstrates that such estimates, which can be called stream water availability, for regional river basins with meager or nonexistent gauge data, can be obtained by combining continuity models of hydrological processes, flow routing, and topology of the river basin. The hydrologic processes can be adequately modeled using high quality databases of hydrologic significance. A stream water availability model is presented for Upper Indus Basin (UIB) utilizing the most up-to-date datasets for topography, temperature, precipitation, net radiation, land cover, soil type, and digital atlas. Multiple datasets have been evaluated and the ones with best accuracy and temporal coverage have been selected for the final model. Upper Indus River and its major tributaries are highly significant in regional water resources management and geopolitics. However, UIB is a poorly studied and largely ungauged river basin with an area of 265,598 km2 and extremely rugged topography. Several factors, the chief ones being the challenging terrain and the trans-boundary nature of the basin, have contributed to this knowledge gap. Hydro-climatologically it is a complex basin with a significant cryospheric component. The spatial and temporal variation of the principal climatic variables, namely precipitation, net radiation, and temperature has been thoroughly accounted for in the development of a stream water availability model based on a process model coupled with a topologic model and a linear reservoir model of river flow routing. Model calculations indicate that there are essentially two hydrologic regimes in UIB. The regime that is truly significant in contributing stream flows, originates from the UIB cryosphere containing outstanding glaciers and snowfields. The other regime, generated from wet precipitation and melt water from seasonal snow covers is insignificant due to high rates of infiltration and evaporation in the semi-desert environment prevailing at elevations below perennial snow and ice covers. In general, the modeled stream flow characteristics match with the sparse discharge measurements that are available. Flow in the Indus considerably increases at its confluence with Shyok River and further downstream where other tributaries form the north join the main stem. At or near the outlet of the basin stream flow can vary from less than 800 m3 s − 1 in the winter and spring to nearly 8,000 m3 s − 1 in the peak summer and can persist to over 1,500 m3 s − 1 in the autumn. The importance of snow and glacial melt in Indus River discharge is apparent and any global or regional climate change affecting the equilibrium line elevation of the snow fields in the Karakoram will have a profound influence on the water availability in the Indus. Estimates are made for per capita water availability in Ladakh and Gilgit-Baltistan territories, controlled by India and Pakistan respectively. Geopolitical significance and climate change effects are discussed briefly.