Water, Air, & Soil Pollution: Focus

, Volume 6, Issue 5, pp 487–494

Modelling Phosphorus Retention in Lakes and Reservoirs


DOI: 10.1007/s11267-006-9032-7

Cite this article as:
Hejzlar, J., Šámalová, K., Boers, P. et al. Water Air Soil Pollut: Focus (2006) 6: 487. doi:10.1007/s11267-006-9032-7


Steady-state models for the prediction of P retention coefficient (R) in lakes were evaluated using data from 93 natural lakes and 119 reservoirs situated in the temperate zone. Most of the already existing models predicted R relatively successfully in lakes while it was seriously under-estimated in reservoirs. A statistical analysis indicated the main causes of differences in R between lakes and reservoirs: (a) distinct relationships between P sedimentation coefficient, depth, and water residence time; (b) existence of significant inflow–outflow P concentration gradients in reservoirs. Two new models of different complexity were developed for estimating R in reservoirs: \(R = {1.84\tau ^{{0.5}} } \mathord{\left/ {\vphantom {{1.84\tau ^{{0.5}} } {{\left( {1 + 1.84\tau ^{{0.5}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 + 1.84\tau ^{{0.5}} } \right)}}\), where τ is water residence time (year), was derived from the Vollenweider/Larsen and Mercier model by adding a calibrated parameter accounting for spatial P non-homogeneity in the water body, and is applicable for reservoirs but not lakes, and \(R = {1 - 1.43} \mathord{\left/ {\vphantom {{1 - 1.43} {{{\left[ {{\text{P}}_{{{\text{in}}}} } \right]}\left( {{\left[ {{\text{P}}_{{{\text{in}}}} } \right]}} \right.} \mathord{\left/ {\vphantom {{{\left[ {{\text{P}}_{{{\text{in}}}} } \right]}\left( {{\left[ {{\text{P}}_{{{\text{in}}}} } \right]}} \right.} {\left. {{\left( {1 + \tau ^{{0.5}} } \right)}} \right)}}} \right. \kern-\nulldelimiterspace} {\left. {{\left( {1 + \tau ^{{0.5}} } \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{{\left[ {{\text{P}}_{{{\text{in}}}} } \right]}\left( {{\left[ {{\text{P}}_{{{\text{in}}}} } \right]}} \right.} \mathord{\left/ {\vphantom {{{\left[ {{\text{P}}_{{{\text{in}}}} } \right]}\left( {{\left[ {{\text{P}}_{{{\text{in}}}} } \right]}} \right.} {\left. {{\left( {1 + \tau ^{{0.5}} } \right)}} \right)}}} \right. \kern-\nulldelimiterspace} {\left. {{\left( {1 + \tau ^{{0.5}} } \right)}} \right)}}^{{0.88}} \), where [Pin] is volume-weighted P concentration in all inputs to the water body (μg l−1), was obtained by re-calibrating the OECD general equation, and is generally applicable for both lakes and reservoirs. These optimised models yield unbiased estimates over a large range of reservoir types.


phosphorus retention mass-balance model lakes reservoirs statistical optimization 

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • J. Hejzlar
    • 1
    • 2
  • K. Šámalová
    • 1
    • 2
  • P. Boers
    • 3
  • B. Kronvang
    • 4
  1. 1.Hydrobiological InstituteAS CRČeské BudějoviceCzech Republic
  2. 2.Faculty of Biological SciencesUSBČeské BudějoviceCzech Republic
  3. 3.RIZALelystadThe Netherlands
  4. 4.National Environmental Research InstituteSilkeborgDenmark

Personalised recommendations