Arnold, V. I., & Khesin, B. A. (1998). *Topological methods in hydrodynamics. Volume 125 of applied mathematical sciences*. New York: Springer.

Beg, M. (2003). Variational and computational methods for flows of diffeomorphisms in image matching and growth in computational anatomy. PhD thesis, John Hopkins University.

Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. *International Journal of Computer Vision,*
* 61*, 139–157.

Bruveris, M., Gay-Balmaz, F., Holm, D. D., & Ratiu, T. S. (2011). The momentum map representation of images. *Journal of Nonlinear Science,*
* 21*, 115–150.

Dupuis, P., & Grenander, U. (1998). Variational problems on flows of diffeomorphisms for image matching. *Quarterly of Applied Mathematics,*
* LVI*, 587–600.

Ebin, D. G., & Marsden, J. E. (1970). Groups of diffeomorphisms and the notion of an incompressible fluid. *Annals of Mathematics,*
* 92*, 102–163.

Gay-Balmaz, F., Marsden, J., & Ratiu, T. (2012). Reduced variational formulations in free boundary continuum mechanics. *Journal of Nonlinear Science,*
* 22*, 463–497.

Hamilton, R. S. (1982). The inverse function theorem of Nash and Moser. *Bulletin of the American Mathematical Society (New Series),*
* 7*, 65–222.

Holm, D. D., & Marsden, J. E. (2005). Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation. In *The breadth of symplectic and Poisson geometry*. Progress in Mathematics (Vol. 232, pp. 203–235). Boston, MA: Birkhäuser.

Joshi, S., & Miller, M. (2000). Landmark matching via large deformation diffeomorphisms. *IEEE Transactions on Image Processing,*
* 9*, 1357–1370.

Khesin, B., & Wendt, R. (2009). *The Geometry of Infinite-dimensional Groups. Volume 51 of a series of modern surveys in mathematics*. Berlin: Springer.

Lang, S. (1999).

*Fundamentals of differential geometry. Volume 191 of Graduate texts in mathematics*. New York: Springer.

CrossRefMarsden, J. E., & West, M. (2001). Discrete mechanics and variational integrators.

*Acta Numerica,*
*10*, 357–514.

MathSciNetMATHCrossRefMarsland, S., McLachlan, R.I., Modin, K., & Perlmutter, M. (2011a). On a geodesic equation for planar conformal template matching. In Proceedings of the 3rd MICCAI workshop on mathematical foundations of computational anatomy (MFCA’11), Toronto.

Marsland, S., McLachlan, R.I., Modin, K., & Perlmutter, M. (2011b). Application of the hodge decomposition to conformal variational problems. arXiv:1203.4464v1 [math.DG].

Michor, P. W., & Mumford, D. (2006). Riemannian geometries on spaces of plane curves. *Journal of European Mathematical Society (JEMS),*
* 8*, 1–48.

Miller, M. I., & Younes, L. (2001). Group actions, homeomorphisms, and matching: A general framework. *International Journal of Computer Vision,*
* 41*, 61–84.

Modin, K., Perlmutter, M., Marsland, S., & McLachlan, R. I. (2011). On Euler–Arnold equations and totally geodesic subgroups. *Journal of Geometry and Physics,*
* 61*, 1446–1461.

Sharon, E., & Mumford, D. (2006). 2D-shape analysis using conformal mapping. *International Journal of Computer Vision,*
* 70*, 55–75.

Shkoller, S. (1998). Geometry and curvature of diffeomorphism groups with \(H^1\) metric and mean hydrodynamics. *Journal of Functional Analysis,*
* 160*, 337–365.

Thompson, D. (1942).

*On growth and form*. New York: Cambridge University Press.

MATHTrouvé, A. (1995). *A*n infinite dimensional group approach for physics based models in patterns recognition. Technical report, Ecole Normale Supérieure.

Trouvé, A. (1998). Diffeomorphisms groups and pattern matching in image analysis. *International Journal of Computer Vision,*
* 28*, 213–221.

Wallace, A. (2006). D’Arcy Thompson and the theory of transformations. *Nature Reviews Genetics,*
* 7*, 401–406.

Younes, L. (2010).

*Shapes and diffeomorphisms. Applied mathematical sciences*. New York: Springer.

CrossRef