International Journal of Computer Vision

, Volume 99, Issue 1, pp 53–68

A Linear Framework for Region-Based Image Segmentation and Inpainting Involving Curvature Penalization

  • Thomas Schoenemann
  • Fredrik Kahl
  • Simon Masnou
  • Daniel Cremers
Article

DOI: 10.1007/s11263-012-0518-7

Cite this article as:
Schoenemann, T., Kahl, F., Masnou, S. et al. Int J Comput Vis (2012) 99: 53. doi:10.1007/s11263-012-0518-7

Abstract

We present the first method to handle curvature regularity in region-based image segmentation and inpainting that is independent of initialization.

To this end we start from a new formulation of length-based optimization schemes, based on surface continuation constraints, and discuss the connections to existing schemes. The formulation is based on a cell complex and considers basic regions and boundary elements. The corresponding optimization problem is cast as an integer linear program.

We then show how the method can be extended to include curvature regularity, again cast as an integer linear program. Here, we are considering pairs of boundary elements to reflect curvature. Moreover, a constraint set is derived to ensure that the boundary variables indeed reflect the boundary of the regions described by the region variables.

We show that by solving the linear programming relaxation one gets reasonably close to the global optimum, and that curvature regularity is indeed much better suited in the presence of long and thin objects compared to standard length regularity.

Keywords

Curvature regularityImage segmentationInpaintingLinear programmingCell complexes

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thomas Schoenemann
    • 1
  • Fredrik Kahl
    • 1
  • Simon Masnou
    • 2
  • Daniel Cremers
    • 3
  1. 1.Center for Mathematical SciencesLund UniversityLundSweden
  2. 2.Institut Camille JordanUniversité Lyon 1, CNRSVilleurbanneFrance
  3. 3.Department of Computer ScienceTU MünchenMünchenGermany