Bertalmio, M., Sapiro, G., and Randall, G. 1999.Region tracking on surfaces deforming via level-sets methods. In *Scale-Space Theories in Computer Vision, Second International Conference, Scale-Space’99*, Mads Nielsen, Peter Johansen, Ole Fogh Olsen, and Joachim Weickert, (Eds.), Corfu, Greece, volume 1682 of *Lecture Notes in Computer Science*, Springer.

Burchard, P., Cheng, L.-T., Merriman, B., and Osher, S. 2001. Motion of curves in three spatial dimensions using a level set approach.

*J. Computational Physics*, 166:720–741.

MathSciNetCrossRefCaselles, V., Kimmel, R., and Sapiro, G. 1997a. Geodesic active contours. *Int. Journal of Computer Vision*.

Caselles, V., Kimmel, R., Sapiro, G., and Sbert, C. 1997b. Minimal surfaces based object segmentation.

*IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(4):394–398.

CrossRefCheng, L-T., Burchard, P., Merriman, B., and Osher, S. 2001. Motion of curves constrained on surfaces using a level set approach. Technical Report UCLA CAM Report 00-32, University of California at Los Angeles.

Dervieux, A. and Thomasset, F. 1979. A finite element method for the simulation of Rayleigh—Taylor instability. In *Approximation Methods for Navier—Stokes Problems*, R. Rautman (Ed.), volume 771 of *Lecture Notes in Mathematics*, Springer: Berlin, pp. 145–158.

Faugeras, O. and Gomes, J. 2000. Dynamic shapes of arbitrary dimension: The vector distance functions. In *Proceedings of the Ninth IMA Conference on Mathematics of Surfaces*, Roberto Cipolla and Ralph Martin (Eds.), The Mathematics of Surfaces IX. Springer.

Faugeras, O. and Keriven, R. 1998. Variational principles, surface evolution, PDEs, level set methods, and the stereo problem.

*IEEE Transactions on Image Processing*, 7(3):336–344.

MathSciNetCrossRefGravouil, A., Moës, N., and Belytschko, T. 2002. Non-planar 3d crack growth by the extended finite element and level sets. part II: level set update.

*International Journal for Numerical Methods in Engineering*, 53:2569–2586.

CrossRefHartley, R.I. and Zisserman, A. 2000. *Multiple View Geometry in Computer Vision*. Cambridge University Press.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. *Computer Graphics*, 26(2):71–78.

Lhuillier, M. and Quan, L. 2003. Surface reconstruction by integrating 3d and 2d data of multiple views. In *Int. Conf. Computer Vision*, Nice, France, pp. 1313–1320.

Lorensen, W.E. and Cline, H.E. 1987. Marching cubes: a high resolution 3d surface reconstruction algorithm.

*Computer Graphics (Siggraph’87)*, 21(4):163–169.

CrossRefMorris, D. and Kanade, T. 2000. Image-consistent surface triangulation. In *Proc. Conf. Computer Vision and Pattern Recognition*, pp. 332–338.

Osher, S. and Sethian, J.A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations.

*Journal of Computational Physics*, 79:12–49.

MathSciNetCrossRefOsher, S.J. and Fedkiw, R.P. 2002. *Level Set Methods and Dynamic Implicit Surfaces*. Springer Verlag.

Piegl, L. and Tiller, W. 1996. *The NURBS Book*. Springer-Verlag.

Pons, J-P., Faugeras, O., and Keriven, R. 2005. Modelling dynamic scenes by registering multi-view image sequences. In *International Conference on Computer Vision and Pattern Recognition*, San Diego, CA.

Pons, J-P., Hermosillo, G., Keriven, R., and Faugeras, O. 2003. How to deal with point correspondences and tangential velocities in the level set framework. In *Int. Conf. Computer Vision*, Nice, France, pp. 894–899.

Sethian, J.A. 1999. *Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science*. Cambridge University Press.

Smereka, P. 2000. Spiral crystal growth.

*Physica D 138*, pp. 282–301.

MATHMathSciNetCrossRefSolem, J.E. and Heyden, A. 2004. Reconstructing open surfaces from unorganized data points. In *International Conference on Computer Vision and Pattern Recognition*, Washington DC.

Solem, J.E. and Kahl, F. 2004. Surface reconstruction from the projection of points, curves and contours. In *2nd Int. Symposium on 3D Data Processing, Visualization and Transmission*, Thessaloniki, Greece.

Solem, J.E. and Kahl, F. 2005. Surface reconstruction using learned shape models. In *Advances in Neural Information Processing Systems 17*. Lawrence K. Saul, Yair Weiss, and Léon Bottou, (Eds.), MIT Press, Cambridge, MA.

Solem, J.E. and Overgaard N.C. 2005. A geometric formulation of gradient descent for variational problems with moving surfaces. In *The 5th International Conference on Scale Space and PDE methods in Computer Vision, Scale Space 2005, Hofgeismar, Germany*, Springer. pp. 419–430.

Solem, J.E., Aanæs, H., and Heyden, A. 2004. A variational analysis of shape from specularities using sparse data. In *2nd Int. Symposium on 3D Data Processing, Visualization and Transmission*, Thessaloniki, Greece.

Zhao, H.K., Osher, S., Merriman, B., and Kang, M. 2000. Implicit and non-parametric shape reconstruction from unorganized points using a variational level set method. In *Computer Vision and Image Understanding*, pp. 295–319.