Skip to main content
Log in

Propagule morphology and river characteristics shape secondary water dispersal in tree species

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Plant migration is a multi-stage process often driven by multiple dispersal vector systems. Water-mediated dispersal (hydrochory) is known to move propagules of nonaquatic species over long distances, but whether propagule morphology affects floating processes is an open question. We used a multi-species approach to assess the role of propagule morphology in the dispersal of primarily wind-dispersed tree species in different urban rivers; the impact of hydraulic structures (locks, spillways) on floating was also considered. We released tagged propagules of eight tree species (Acer platanoides, Acer negundo, Acer saccharinum, Ailanthus altissima, Fraxinus excelsior, Robinia pseudoacacia, Tilia platyphyllos, Ulmus glabra) in the main lowland Spree River and in the small tributary Panke River (Berlin, Germany) and directly observed the fate of the floating propagules over river sections of 1,200 m. Our results demonstrate the following: (1) Water is an effective dispersal agent for wind-dispersed tree species, extending typical wind-related transport distances by several times. (2) Interspecific differences in transport distances reflect propagule characteristics (dry weight, maximum wing width) and river system. (3) Propagule morphology also affects deposition patterns as it was generally the large propagules that were trapped along semi-natural embankments in slow flow areas. (4) Hydraulic structures hampered but did not entirely stop water-mediated dispersal and diminished the effects of propagule morphology on floating processes. These results provide novel insights into the functioning of hydrochory as an important dispersal vector of tree species in river systems and as a driver of plant invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersson E, Nilsson C, Johansson ME (2000) Plant dispersal in boreal rivers and its relation to diversity in riparian flora. J Biogeogr 27:1095–1106

    Article  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds. Ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Bonn S, Poschlod P (1998) Ausbreitungsbiologie der Pflanzen Mitteleuropas. Grundlagen und kulturhistorische Aspekte. UTB Quelle & Meyer, Wiesbaden

    Google Scholar 

  • Chambert S, James CS (2009) Sorting of seeds by hydrochory. River Res Appl 25:48–61

    Article  Google Scholar 

  • Clark JS, Silman M, Kern R, Macklin E, Hille Ris Lambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80:1475–1494

    Article  Google Scholar 

  • Danvind M, Nilsson C (1997) Seed floating ability and distribution of alpine plants along a northern Swedish river. J Veg Sci 8:271–276

    Article  Google Scholar 

  • Engström J, Nilsson C, Jansson R (2009) Effects of stream restoration on dispersal of plant propagules. J Appl Ecol 46:397–405

    Article  Google Scholar 

  • Groffman PM, Bain DJ, Band LE, Belt KT, Brush GS, Grove JM, Pouyat RV, Yesilonis IC, Zipperer WC (2003) Down by the riverside: urban riparian ecology. Frontiers Ecol Environ 6:315–321

    Article  Google Scholar 

  • Gurnell A, Thompson K, Goodson J, Moggridge H (2008) Propagule deposition along river margins: linking hydrology and ecology. J Ecol 96:553–565

    Article  Google Scholar 

  • Hampe A (2004) Extensive hydrochory uncouples spatiotemporal patterns of seedfall and seedling recruitment in a ‘bird-dispersed’ tree. J Ecol 92:797–907

    Article  Google Scholar 

  • Hampe A (2011) Plants on the move: the role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol 37:666–673

    Article  Google Scholar 

  • Higgins SI, Nathan R, Cain ML (2003) Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology 84:1945–1956

    Article  Google Scholar 

  • Hirsch H, Wypior C, von Wehrden H, Wesche K, Renison D, Hensen I (2012) Germination performance of native and non-native Ulmus pumila populations. NeoBiota 15:53–68

    Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Ann Rev Ecol Syst 13:201–228

    Article  Google Scholar 

  • Hulme PE et al (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414

    Article  Google Scholar 

  • Ikeda H, Itoh K (2001) Germination and water dispersal of seeds from a threatened plant species Penthorum chinense. Ecol Res 16:99–106

    Article  Google Scholar 

  • Jansson R, Zinko U, Merrit DM, Nilsson C (2005) Hydrochory increases riparian plant species richness: a comparison between a free-flowing and a regulated river. J Ecol 93:1094–1103

    Article  Google Scholar 

  • Johansson ME, Nilsson C, Nilsson E (1996) Do rivers function as corridors for plant dispersal? J Veg Sci 7:593–598

    Article  Google Scholar 

  • Johnson WC (1988) Estimating dispersibility of Acer, Fraxinus and Tilia in fragmented landscapes from patterns of seedling establishment. Landsc Ecol 1:175–187

    Article  Google Scholar 

  • Kaproth MA, McGraw JB (2008) Seed viability and dispersal of the wind-dispersed invasive Ailanthus altissima in aqueous environments. For Sci 54:490–496

    Google Scholar 

  • Katul GG, Porporato A, Nathan R, Siqueira M, Soons MB, Poggi D, Horn HS, Levin SA (2005) Mechanistic analytical models for long-distance seed dispersal by wind. Am Nat 166:368–381

    Article  CAS  PubMed  Google Scholar 

  • Kowarik I, Säumel I (2007) Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect Plant Ecol Evol Syst 8:207–237

    Article  Google Scholar 

  • Kowarik I, Säumel I (2008) Water dispersal as an additional pathway to invasions by the primarily wind-dispersed tree Ailanthus altissima. Plant Ecol 198:241–252

    Article  Google Scholar 

  • Kowarik I, von der Lippe M (2011) Secondary wind dispersal enhances long-distance dispersal of an invasive species in urban road corridors. NeoBiota 9:49–70

    Article  Google Scholar 

  • Küßner R, Wagner S (2002) Struktur, Dynamik und Bewirtschaftung von Auenwäldern am Mittellauf der Elbe. In: Roloff A, Bonn S (Hrsg.) Ergebnisse ökologischer Forschung zur nachhaltigen Bewirtschaftung von Auenwäldern an der Mittleren Elbe. Forstwiss Beitr Tharandt/Contrib For Sc 17:193–227

  • Landenberger RE, Kota NL, McGraw JB (2007) Seed dispersal of the non-native invasive tree Ailanthus altissima into contrasting environments. Plant Ecol 192:55–70

    Article  Google Scholar 

  • Lopez-Almansa JC (2004) Review. Reproductive ecology of riparian elms. Invest Agrar Sist Recur For 13:17–27

    Google Scholar 

  • Matlack GR (1987) Diaspore size, shape, and fall behavior in wind-dispersed plant species. Am J Bot 74:1150–1160

    Article  Google Scholar 

  • Merritt DM, Wohl EE (2002) Processes governing hydrochory along rivers: hydraulics, hydrology, and dispersal phenology. Ecol Appl 12:1071–1087

    Article  Google Scholar 

  • Middleton BA (2002) Flood pulsing in the regeneration and maintenance of species in Riverine Forested Wetlands of the Southeastern United States. In: Middleton BA (ed) Flood pulsing in wetlands: restoring the natural hydrological balance. Wiley, New York, pp 223–295

    Google Scholar 

  • Morimoto J, Kominami R, Koike T (2010) Distribution and characteristics of the soil seed bank of the black locust (Robinia pseudoacacia) in a headwater basin in northern Japan. Landsc Ecol Eng 6:193–199

    Article  Google Scholar 

  • Nathan R, Schurr F, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A (2008) Mechanisms of long-distance seed dispersal. Trends Ecol Evol 23:638–647

    Article  PubMed  Google Scholar 

  • Nilsson C, Ekblad A, Dynesius M, Backe S, Gardfjell M, Carlberg B, Hellqvist S, Jansson R (1994) A comparison of species richness and traits of riparian plants between a main river channel and its tributaries. J Ecol 82:281–295

    Article  Google Scholar 

  • Nilsson C, Brown RL, Jansson R, Merritt DM (2010) The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev 85:837–858

    PubMed  Google Scholar 

  • Palmer MA, Bernhardt ES, Allan JD et al (2005) Standards for ecologically successful river restoration. J Appl Ecol 42:208–217

    Article  Google Scholar 

  • Paulsen TR, Hogstedt G (2002) Passage through bird guts increases germination rate and seedling growth in Sorbus aucuparia. Funct Ecol 16:608–616

    Article  Google Scholar 

  • Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Pysek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139

    Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Rood SB, Braatne JH, Goater LA (2010) Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds. Ecol Appl 20:1664–1677

    Article  PubMed  Google Scholar 

  • Rouifed S, Puijalon S, Viricel MR, Piola F (2011) Achene buoyancy and germinability of the terrestrial invasive Fallopia × bohemica in aquatic environment: a new vector of dispersion? EcoScience 18:79–84

    Article  Google Scholar 

  • Säumel I, Kowarik I (2010) Urban rivers as dispersal corridors for primarily wind-dispersed invasive tree species. Landsc Urban Plan 94:244–249

    Article  Google Scholar 

  • Schmiedel D (2010) Fraxinus pennsylvanica in den Auenwäldern der Mittelelbe—Invasionsbiologie und ökologisches Verhalten im naturschutzfachlichen Kontext. Berliner Beiträge zur Ökologie Band 6. Weißensee Verlag, Berlin

  • Schneider RL, Sharitz RR (1988) Hydrochory and regeneration in a bald cypress-water tupelo swamp forest. Ecology 69:1055–1063

    Article  Google Scholar 

  • Seiwa K, Tozawa M, Ueno N, Kimura M, Yamasaki M, Maruyama K (2008) Roles of cottony hairs in directed seed dispersal in riparian willows. Plant Ecol 198:27–35

    Article  Google Scholar 

  • Siedschlag S (1997) Erfahrungen mit dem SIMK Verfahren bei der Durchflußermittlung an Bundeswasserstraßen im Zusammenhang mit unterschiedlichen Methoden zur lokalen Fließgeschwindigkeitsmessung. BfG-Bericht 1099, Berlin

  • Soomers H, Winkel DN, Du Y, Wassen MJ (2010) The dispersal and deposition of hydrochorous plant seeds in drainage ditches: hydrochorous dispersal driven by wind. Freshw Biol 55:2032–2046

    Article  Google Scholar 

  • Sutherland EK, Hale BJ, Hix DM (2000) Defining species guilds in the central hardwood forest, USA. Plant Ecol 174:1–19

    Article  Google Scholar 

  • Thébauld C, Debussche M (1991) Rapid invasion of Fraxinus ornus L. along the Hérauld river system in Southern France. The importance of seed dispersal by water. J Biogeogr 18:7–12

    Article  Google Scholar 

  • Traveset A, Riera N, Mas ME (2001) Passage through bird guts causes interespecific differences in seed germination characteristics. Funct Ecol 15:669–675

    Article  Google Scholar 

  • Van der Wall SB, Longland WS (2004) Diplochory: are two seed dispersers better than one? Trends Ecol Evol 19:155–161

    Article  Google Scholar 

  • von der Lippe M, Kowarik I (2007) Long-distance dispersal by vehicles as driver in plant invasions. Conserv Biol 21:986–996

    Article  PubMed  Google Scholar 

  • von der Lippe M, Bullock JM, Kowarik I, Knopp T, Wichmann M (2013) Human-mediated dispersal of seeds by the airflow of vehicles. PLoS ONE 8(1):e52733

    Article  PubMed  Google Scholar 

  • Wagner S, Wälder K, Ribbens E, Zeibig A (2004) Directionality in fruit dispersal models for anemochorous forest trees. Ecol Model 179:487–498

    Article  Google Scholar 

  • Zalapa JE, Brunet J, Guries RP (2009) Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native U. rubra. Am J Bot 96:1116–1128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Technische Universität Berlin (Projekt Spreeathen 2008/09). We thank Daria Andreeva, Tom Bewernick, Silvia Groeger, Robin Grunzke, Janosch Marder, Linda Mai, Annette Müller, Christoph Schikora, Sarah Schöner, Luisa Späth, Charles Strohmeyer, Sebastian Ossenkop, Salka Waterloo, Frauke Weber, Victoria Wölk and Sandra Woicke for supporting field work, the Wasser- and Schifffahrtsamt in Berlin for providing access to hydraulic structures, Willy Rohloff, Yoganathan Gopalasamy and Gabi Hinz for technical assistance, two anonymous reviewer for helpful comments and Kelaine Ravdin for improving our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Säumel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Säumel, I., Kowarik, I. Propagule morphology and river characteristics shape secondary water dispersal in tree species. Plant Ecol 214, 1257–1272 (2013). https://doi.org/10.1007/s11258-013-0249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-013-0249-z

Keywords

Navigation