, Volume 213, Issue 5, pp 809-820
Date: 16 Mar 2012

Plant functional composition and ecosystem properties: the case of peatlands in South Africa

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The assumption that ecosystems with similar emergent properties consist of similar functional groupings of plant species is tested by comparing three peatlands from different bioregions across South Africa. They are Mfabeni Swamp in the subtropical coastal region, Wakkerstroom on the inland plateau, and Goukou wetland in the Winter Rainfall region of the Western Cape. In each of the three peatlands, about 400 small vegetation plots have been made from which the abundance of each species per wetland can be assessed. The most dominant species in these plots have been investigated for 17 traits. The functional composition of the vegetation types has been compared across the three peatlands and Functional Diversity has been calculated, taking the dominance of each species into account. One peatland differed greatly from the other two, since the dominant species was of a functional type (“Palmiet/woody sedge”) that was very divergent from any other peatland species found in the study. This functional type can be considered an ecosystem engineer and the effects that this functional type has on the ecosystem results in the occurrence of many other functional types that do not occur in the other peatlands. When we consider emergent traits of an ecosystem as a function of all the plant functional traits that occur in that ecosystem, then peatlands can be regarded as a heterogeneous group of ecosystems. Even if emergent properties such as peat formation are similar between ecosystems, those ecosystems may still consist of very different functional groups. Ecosystem engineers have an impact on the final functional composition of an ecosystem and the degree in which ecosystem engineering plays a role in peatlands differs between different peatlands.