, Volume 213, Issue 3, pp 493-503
Date: 29 Oct 2011

Phenotypic plasticity of Chenopodium murale across contrasting habitat conditions in peri-urban areas in Indian dry tropics: Is it indicative of its invasiveness?

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Phenotypic plasticity is an important plant trait associated with invasiveness of alien plants that reflects its ability to occupy a wide range of environments. We investigated the phenotypic response of Chenopodium murale to resource variability and ontogeny. Its plant-level and leaf-level traits were studied at high-resource (HR) and low-resource (LR) sites in peri-urban areas in Indian dry tropics. Plants at LR had significantly higher root length, root/shoot biomass ratio, stem mass and root mass fractions. Plants at HR had higher shoot length, basal diameter, leaf mass fraction and leaf area ratio. Leaf-level traits like leaf area and chlorophyll a were also higher here. Mean plasticity indices for plant- and leaf-level traits were higher at HR. With increasing total plant biomass, there was significant increase in the biomass of leaf, stem, root, and reproductive parts, and root and shoot lengths, whereas root/shoot length ratio, their biomass ratio, and leaf and root mass fractions declined significantly. Allocation to roots and leaves significantly decreased with increasing plant size at both sites. But, at any size, allocation to roots was greater at LR, indicative of optimization of capture of soil nutrients, whereas leaf allocation was higher at HR. Consistently increasing stem allocation equaled leaf allocation at comparatively higher shoot lengths at HR. Reproductive biomass comprised 10–12% of the plant’s total biomass. In conclusion, the success of alien weed C. murale across environmentally diverse habitat conditions in Indian dry tropics can be attributed to its high phenotypic plasticity, resource utilization capability in low-resource habitats and higher reproductive potential. These characteristics suggest that it will continue to be an aggressive invader.