Plant Ecology

, Volume 203, Issue 2, pp 195–205

Biogenic volatile organic compounds from an invasive species: impacts on plant–plant interactions

  • Jacob N. Barney
  • Jed P. Sparks
  • Jim Greenberg
  • Thomas H. Whitlow
  • Alex Guenther
Article

DOI: 10.1007/s11258-008-9529-4

Cite this article as:
Barney, J.N., Sparks, J.P., Greenberg, J. et al. Plant Ecol (2009) 203: 195. doi:10.1007/s11258-008-9529-4

Abstract

Invasive plant species impact both ecosystems and economies worldwide, often by displacing native biota. Many plant species exude/emit compounds into the surrounding environment with minor consequences in their native habitat due to a long coevolutionary history. However, upon introduction to ecosystems naïve to these compounds, unpredictable interactions can manifest. The majority of the putative allelochemicals studied have been root exudates, despite the large number of plant species that emit volatile organic compounds. We quantified the concentrations and ecological consequences of volatile monoterpenes from the North American invasive perennial Artemisia vulgaris. Ambient monoterpene-mixing ratios inside an A. vulgaris canopy were 0.02–4.15 ppbv in May and 0.01–0.05 ppbv in August, but were negligible (below instrument detection limit of 0.01 ppbv) 10 m away. Foliar disturbance increased total monoterpene concentration to a maximum of 27 ppbv. However, this level remains 1,000-fold lower than that shown to be phytotoxic to sensitive species in laboratory assays. In contrast, soil monoterpene concentrations were >74-fold higher inside [≤35 ± 11 ng g−1 (SDW)] and 19-fold higher at the edge [9 ± 3 ng g−1 (SDW)], compared to outside the A. vulgaris stand [0.48 ± 0.05 ng g−1 (SDW)]. A common native competitor species, Solidago canadensis, grown in pots and resident soil in situ yielded up to 50% less aboveground biomass inside as compared to outside the A. vulgaris stand. Activated carbon had no effect on greenhouse-grown S. canadensis performance when grown with A. vulgaris, suggesting root-derived exudates are not responsible for field observations. Results from this study suggest that A. vulgaris-derived monoterpenes have little direct activity in their volatile gaseous state, but are concentrated in the soil matrix within and bordering the A. vulgaris stand, thereby reducing interspecific performance and potentially fostering the subsequent local invasion of this species.

Keywords

AllelopathyArtemisia vulgarisBiogenic volatile organic compoundBiological invasionMonoterpeneMugwortSolidago canadensis

Abbreviations

VOC

Volatile organic compound

BVOC

Biogenic volatile organic compound

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jacob N. Barney
    • 1
    • 2
  • Jed P. Sparks
    • 3
  • Jim Greenberg
    • 4
  • Thomas H. Whitlow
    • 1
  • Alex Guenther
    • 4
  1. 1.Department of HorticultureCornell UniversityIthacaUSA
  2. 2.Department of Plant SciencesUniversity of CaliforniaDavisUSA
  3. 3.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  4. 4.Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderUSA