, Volume 176, Issue 1, pp 131-142

Carbon limitation leads to suppression of first year oak seedlings beneath evergreen understory shrubs in Southern Appalachian hardwood forests

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Inhibition of canopy tree recruitment beneath thickets of the evergreen shrubs Rhododendron maximum L. and Kalmia latifolia L. has long been observed in Southern Appalachian forests, yet the mechanisms of this process remain unresolved. We present a first-year account of suppression of oak seedlings in relation to Rhododendron and Kalmia basal area, light and resource availability, seedling performance and the rates of seedling damage (i.e., herbivory). We found no evidence of first-year seedling suppression or significant resource deficiencies beneath thickets of K. latifolia in mature mixed hardwood stands. Suppression beneath R. maximum was apparent during the first growing season. We found that seedling biomass, light availability prior to canopy closure, and seedling tissue C:N ratios were negatively correlated with R. maximum basal area. Basal area of R. maximum was positively correlated with seedling mortality rates, soil [Al], and early-growing season leaf herbivory rates. Seedling growth was positively correlated with light and tissue C:N, while negatively correlated with soil [Al]. Overall, our results support the inhibition model of shade-mediated carbon limitation beneath dense understory shrubs and indicate the potential importance of herbivory and aluminum toxicity as components of a suppression mechanism beneath R. maximum thickets. We present a causal model of first year inhibition beneath R. maximum in the context of our findings and the results of prior studies.