Skip to main content
Log in

Acute tubular necrosis and pre-renal acute kidney injury: utility of urine microscopy in their evaluation- a systematic review

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Urine microscopy with examination of the urine sediment examination provides useful diagnostic information about the histology of the kidneys. While most nephrologists use urine microscopy to assess for the presence of glomerular diseases, they are less apt to use this diagnostic test when pre-renal acute kidney injury (AKI) or acute tubular necrosis (ATN) is clinically suspected. More often, tests such as fractional excretion of sodium (FeNa) and fractional excretion of urea (FeUrea) are used to differentiate these two causes of acute kidney injury.

Design and Methods

A systematic search of Medline and the Cochrane Database, with no language restrictions, for studies in humans on urine microscopy with sediment examination for the differential diagnosis or risk stratification of acute kidney injury published between January 1960 and February 2009 was undertaken.

Results

Based on the limited available data on urine microscopy reviewed in this paper, this test has merit in hospitalized patients with acute kidney injury to differentiate between pre-renal acute kidney injury and acute tubular necrosis. The presence and number of renal tubular epithelial cells and renal tubular epithelial cell casts and/or granular casts in the urine sediment appear beneficial in the diagnosis of ATN and may be useful in predicting more severe kidney damage that is reflected by non-recovery of AKI and need for dialysis.

Conclusions

Urine microscopy and urine sediment examination is widely available, easy to perform, and inexpensive. The clinical utility of urine microscopy in the differential diagnosis and prediction of outcome in AKI may be increased by using a simple urinary scoring system based on the number of renal tubular epithelial cells and renal tubular epithelial cell/granular casts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bagshaw SM, Laupland KB, Doig CJ, Mortis G, Fick GH, Mucenski M, Godinez-Luna T, Svenson LW, Rosenal T (2005) Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population based study. Crit Care 9:700–709

    Article  Google Scholar 

  2. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  CAS  PubMed  Google Scholar 

  3. Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT (1983) Hospital-acquired renal insufficiency: a prospective study. Am J Med 74:243–248

    Article  CAS  PubMed  Google Scholar 

  4. Shusterman N, Strom BL, Murray TG, Morrison G, West SL, Maislin G (1987) Risk factors and outcome of hospital-acquired acute renal failure. Am J Med 83:65–71

    Article  CAS  PubMed  Google Scholar 

  5. Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. Am J Kidnye dis 39:930–936

    Article  Google Scholar 

  6. Bagshaw SM, George C, Dinu I, Bellomo R (2008) A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant 23:1203–1210

    Article  PubMed  Google Scholar 

  7. Ostermann M, Chang RW (2007) Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med 35:1837–1843

    Article  PubMed  Google Scholar 

  8. Liano F, Pascual J, Madrid Acute Renal Failure Study Group (1996) Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Kidney Int 50:811–818

    Article  CAS  PubMed  Google Scholar 

  9. Mehta RL, Pascual MT, Soroko S, Savage BR, Himmelfarb J, Ikizler TA, Paganini EP, Chertow GM (2004) Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int 66:1613–1621

    Article  PubMed  Google Scholar 

  10. Geyer SJ (1993) Urinalysis and urinary sediment in patients with renal disease. Clin Lab Med 13:13–20

    CAS  PubMed  Google Scholar 

  11. Carvounis CP, Nisar S, Guro-Razuman S (2002) Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int 62:2223–2229

    Article  CAS  PubMed  Google Scholar 

  12. Fogazzi GB, Cameron JS, Ritz E, Ponticelli C (1994) The history of urinary microscopy to the end of the 19th century. Am J Nephrol 14:452–457

    Article  CAS  PubMed  Google Scholar 

  13. Becker GJ, Fairley KF (2001) urinalysis. In: Massry SG, Glassock RJ (eds) Textbook of nephrology. 4th edn, Philadelphia: Lippincott Williams and Wilkins, pp 1765–1783

  14. Fogazzi GB, Garigali G, Pirovano B, Muratore MT, Raimondi S, Berti S (2007) How to improve the teaching of urine microscopy. Clin Chem Lab Med 45:407–412

    Article  CAS  PubMed  Google Scholar 

  15. Hayden JA, Côté P, Bombardier C (2006) Evaluation of the quality of prognosis studies in systematic reviews. Ann Intern Med 144(6):427–437

    PubMed  Google Scholar 

  16. Marcussen N, Schumann J, Campbell P, Kjellstrand C (1995) Cytodiagnostic urinalysis is very useful in the differential diagnosis of acute renal failure and can predict the severity. Ren Fail 17(6):721–729

    Article  CAS  PubMed  Google Scholar 

  17. Chawla LS, Dommu A, Berger A, Shih S, Patel SS (2008) Urinary sediment cast scoring index for acute kidney injury: a pilot study. Nephron Clin Pract 110(3):c145–c150

    Article  PubMed  Google Scholar 

  18. Perazella MA, Coca SG, Kanbay M, Brewster UC, Parikh CR (2008) Diagnostic utility of urine microscopy in the differential diagnosis of acute kidney injury. Clin J Am Soc Nephrol 3:1615–1619

    Article  PubMed  Google Scholar 

  19. Bagshaw SM, Langenberg C, Bellomo R (2006) Urinary biochemistry and microscopy in septic acute renal failure: a systematic review. Am J Kidney Dis 48(5):695–705

    Article  CAS  PubMed  Google Scholar 

  20. Gay C, Cochat P, Pellet H, Floret D, Buenerd A (1987) Urinary sediment in acute renal failure. Pediatrie 42:723–727

    CAS  PubMed  Google Scholar 

  21. Graber M, Lane B, Lamia R, Pastoriza-Munoz E (1991) Bubble cells: renal tubular cells in the urinary sediment with characteristics of viability. J Am Soc Nephrol 1:999–1004

    CAS  PubMed  Google Scholar 

  22. Brady HR, Brenner BM, Lieberthal W (1996) Acute renal failure. In: Brenner BM (ed) Brenner & Rector’s the kidney, 5th edn. W.B. Saunders, Philadelphia, pp 1200–1250

    Google Scholar 

  23. Miller TR, Anderson RJ, Linas SL, Henrich WL, Berns AS, Gabow PA, Schrier RW (1978) Urinary indices in acute renal failure: a prospective study. Ann Intern Med 89:47–50

    CAS  PubMed  Google Scholar 

  24. Vaz AJ (1983) Low fractional excretion of urine sodium in acute renal failure due to sepsis. Arch Intern Med 143:738–739

    Article  CAS  PubMed  Google Scholar 

  25. Fang LST, Sirota RA, Ebert TH, Lichtenstein NS (1980) Fractional excretion sodium with contrast media-induced acute renal failure. Arch Intern Med 140:531–533

    Article  CAS  PubMed  Google Scholar 

  26. Nanji AJ (1981) Increased fractional excretion of sodium in prerenal azotemia: Need for careful interpretation. Clin Chem 27:1314–1315

    CAS  PubMed  Google Scholar 

  27. Carvounis CP, Nisar S, Guro-Razuman S (2002) Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int 62(6):2223–2229

    Article  CAS  PubMed  Google Scholar 

  28. Pepin M, Bouchard J, Legault L, Ethier J (2007) Diagnostic performance of fractional excretion of urea and fractional excretion of sodium in the evaluation of patients with acute kidney injury with or without diuretic treatment. Am J Kidney Dis 50:566–573

    Article  PubMed  Google Scholar 

  29. Goldstein MH, Lenz PR, Levitt MF (1969) Effect of urine flow rate on urea reabsorption in man. Urea as a ‘tubular marker’. J Appl Physiol 26:594–599

    CAS  PubMed  Google Scholar 

  30. Parikh CR, Jani A, Melnikov VY et al (2004) Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43:405–414

    Article  CAS  PubMed  Google Scholar 

  31. Han WK, Bailly V, Abichandani R et al (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62:237–244

    Article  CAS  PubMed  Google Scholar 

  32. Nickolas TL, O’Rourke MJ, Yang J et al (2008) Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med 148:810–819

    PubMed  Google Scholar 

  33. Herget-Rosenthal S, Poppen D, Husing J et al (2004) Prognostic value of tubular proteinuria and enzymuria in nonoliguric acute tubular necrosis. Clin Chem 50:552–558

    Article  CAS  PubMed  Google Scholar 

  34. Liangos O, Perianayagam MC, Vaidya VS et al (2007) Urinary N-acetyl-beta-(d)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol 18:904–912

    Article  CAS  PubMed  Google Scholar 

  35. Vaidya VS, Waikar SS, Ferguson MA et al (2008) Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci 1:200–208

    Article  CAS  PubMed  Google Scholar 

  36. Zappitelli M, Washburn KK, Arikan AA et al (2007) Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 11:R84

    Article  PubMed  Google Scholar 

  37. Haase M, Bellomo R, Devarajan P et al (2009) Novel biomarkers early predict the severity of acute kidney injury after cardiac surgery in adults. Ann Thorac Surg 88:124–130

    Article  PubMed  Google Scholar 

  38. Bennett M, Dent CL, Ma Q et al (2008) Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol 3:665–673

    Article  PubMed  Google Scholar 

  39. Parikh CR, Mishra J, Thiessen-Philbrook H et al (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 70:199–203

    Article  CAS  PubMed  Google Scholar 

  40. Chien TI, Kao JT, Liu HL et al (2007) Urine sediment examination: a comparison of automated urinalysis systems and manual microscopy. Clin Chim Acta 384:28–34

    Article  CAS  PubMed  Google Scholar 

  41. Shayanfar N, Tobler U, von Eckardstein A et al (2007) Automated urinalysis: first experiences and a comparison between the Iris iQ200 urine microscopy system, the Sysmex UF-100 flow cytometer and manual microscopic particle counting. Clin Chem Lab Med 45:1251–1256

    Article  CAS  PubMed  Google Scholar 

  42. Tsai JJ, Yeun JY, Kumar VA, Don BR (2005) Comparison and Interpretation of Urinalysis Performed by a Nephrologist Versus a Hospital-Based Clinical Laboratory. Am J of Kidney Dis 46:820–829

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kanbay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanbay, M., Kasapoglu, B. & Perazella, M.A. Acute tubular necrosis and pre-renal acute kidney injury: utility of urine microscopy in their evaluation- a systematic review. Int Urol Nephrol 42, 425–433 (2010). https://doi.org/10.1007/s11255-009-9673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-009-9673-3

Keywords

Navigation