, Volume 64, Issue 7, pp 991-1018

Impulsive differential inclusions involving evolution operators in separable Banach spaces

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

We present some results on the existence of mild solutions and study the topological structures of the sets of solutions for the following first-order impulsive semilinear differential inclusions with initial and boundary conditions: $$ \begin{array}{*{20}{c}} {y^{\prime}(t)-A(t)y(t)\in F\left( {t,y(t)} \right)\quad \mathrm{for}\;\mathrm{a}.\mathrm{e}\quad t\in J\backslash \left\{ {{t_1},\ldots,{t_m},\ldots } \right\},} \\ {y\left( {t_k^{+}} \right)-y\left( {t_k^{-}} \right)={I_k}\left( {y\left( {t_k^{-}} \right)} \right),\quad k=1,\ldots,} \\ {y(0)=a} \\ \end{array} $$ and $$ \begin{array}{*{20}{c}} {y^{\prime}(t)-A(t)y(t)\in F\left( {t,y(t)} \right)\quad \mathrm{for}\;\mathrm{a}.\mathrm{e}\quad t\in J\backslash \left\{ {{t_1},\ldots,{t_m},\ldots } \right\},} \\ {y\left( {t_k^{+}} \right)-y\left( {t_k^{-}} \right)={I_k}\left( {y\left( {t_k^{-}} \right)} \right),\quad k=1,\ldots,} \\ {Ly=a,} \\ \end{array} $$ where $ J={{\mathbb{R}}_{+}} $ , 0 = t 0 < t 1 < … < t m <…, $ m\in \mathbb{N} $ , lim k→∞ t k = ∞, A(t) is the infinitesimal generator of a family of evolution operators U(t, s) in a separable Banach space E and F is a set-valued mapping. The functions I k characterize the jumps of solutions at the impulse points t k , k = 1, ….The mapping L: PC b E is a bounded linear operator. We also investigate the compactness of the set of solutions, some regularity properties of the operator solutions, and the absolute retract.

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 7, pp. 867–891, July, 2012.