, Volume 8, Issue 1, pp 39-57

Detection of biotic responses to urbanization using fish assemblages from small streams of western Georgia, USA

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We examined relationships between stream fish assemblages and land use alteration associated with urbanization in 15 lower Piedmont watersheds along an urbanization gradient north of Columbus, western Georgia. Based on land cover data from 2002 Landsat 7 TM imagery aerial photos, streams drained watersheds that were largely urban, developing (suburban), agricultural (pasture), managed pine forest, and unmanaged mixed-forest. We quantified fish seasonally from 3 run-pool segments in each stream, and used a variety of metrics as response variables in analyses of relationships between fish assemblage structure and land use and natural basin variation. In general, Georgia-Index of Biotic Integrity (GA-IBI) values, Bray-Curtis faunal similarity of streams to mean conditions within reference streams, proportions of fish as lithophilic spawners, and fish lacking eroded fins, lesions, tumors decreased with increasing urbanization. Multiple regression indicated that assemblages were explained by a combination of land use and natural basin variables (basin size, average discharge, nearest distance to a larger downstream tributary [colonization source]), with land use variables being important predictors of summer assemblages and natural basin variables being more important in winter and spring assemblages. Non-metric multidimensional scaling (NMDS) ordinations revealed strong separation between assemblages in urban watersheds and forested watersheds, whereas assemblages in agricultural and developing watersheds were intermediate between those in urban and forested watersheds. Our data suggest that fish are reliable indicators of anthropogenic disturbance at the landscape scale, at least seasonally, and may be used to forecast the magnitude of landscape-level changes in stream structure and function associated with the conversion of forests to urban/suburban land in the Southeast.