Skip to main content

Advertisement

Log in

Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

A major application of RNA interference (RNAi) is envisaged for the production of virus-resistant transgenic plants. For fruit trees, this remains the most, if not the only, viable option for the control of plant viral disease outbreaks in cultivated orchards, due to the difficulties associated with the use of traditional and conventional disease-control measures. The use of RNAi might provide an additional benefit for woody crops if silenced rootstock can efficiently transmit the silencing signal to non-transformed scions, as has already been demonstrated in herbaceous plants. This would provide a great opportunity to produce non-transgenic fruit from transgenic rootstock. In this review, we scrutinise some of the concerns that might arise with the use of RNAi for engineering virus-resistant plants, and we speculate that this virus resistance has fewer biosafety concerns. This is mainly because RNAi-eliciting constructs only express small RNA molecules rather than proteins, and because this technology can be applied using plant rootstock that can confer virus resistance to the scion, leaving the scion untransformed. We discuss the main biosafety concerns related to the release of new types of virus-resistant plants and the risk assessment approaches in the application of existing regulatory systems (in particular, those of the European Union, the USA, and Canada) for the evaluation and approval of RNAi-mediated virus-resistant plants, either as transgenic varieties or as plant virus resistance induced by transgenic rootstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. (http://bch.cbd.int/).

  2. http://www.gmo-compass.org/eng/regulation/regulatory_process/.

  3. http://www.cbd.int/biosafety/.

References

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  PubMed  CAS  Google Scholar 

  • AHTEG (Ad Hoc Technical Expert Group on Risk Assessment and Risk Management under the Cartagena Protocol on Biosafety) (2011) Report of the third meeting of the Ad Hoc Technical Expert Group on Risk Assessment and Risk Management under the Cartagena Protocol on Biosafety. http://bch.cbd.int/onlineconferences/ahteg_ra.shtml. Third meeting, Mexico City

  • Auer C, Frederick R (2009) Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 27:644–651

    Article  PubMed  CAS  Google Scholar 

  • Batuman O, Mawassi M, Bar-Joseph M (2006) Transgenes consisting of a dsRNA of an RNAi suppressor plus the 3′UTR provide resistance to Citrus tristeza virus sequences in Nicotiana benthamiana but not in citrus. Virus Genes 33:319–327

    PubMed  CAS  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    PubMed  CAS  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Beachy RN (1997) Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr Opin Biotechnol 8:215–220

    Article  PubMed  CAS  Google Scholar 

  • Bleys A, Houdt HV, Depicker A (2005) Transitive and systemic RNA silencing: both involving an RNA amplification mechanism? Nucl Acids Mol Biol 17:119–139

    Article  Google Scholar 

  • Brosnan CA, Voinnet O (2011) Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol 14:580–587

    Article  PubMed  CAS  Google Scholar 

  • COGEM (2006) New techniques in plant biotechnology. COGEM report CGM/061024-02. www.cogem.net. Commission on Genetic Modification, The Hague

  • Commission on Life Sciences (CLS) (1989). Field testing genetically modified organisms: framework for decisions. http://www.nap.edu/openbook.php?record_id=1431&page=1

  • Craig W, Tepfer M, Degrassi G, Ripandelli D (2008) An overview of general features of risk assessments of genetically modified crops. Euphytica 164:853–880

    Article  Google Scholar 

  • Davis JM, White LT, Crane HJ (2004) Resistance to Papaya ringspot virus in transgenic papaya breeding lines. Proc Fla State Hort Soc 117:241–245

    Google Scholar 

  • Di Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V (2005) Hairpin RNA-mediated silencing of plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res 14:989–994

    Article  PubMed  Google Scholar 

  • Di Nicola-Negri E, Tavazza M, Salandri L, Ilardi V (2010) Silencing of Plum pox virus 5′UTR/P1 sequence confers resistance to a wide range of PPV strains. Plant Cell Rep 29:1435–1444

    Article  PubMed  CAS  Google Scholar 

  • Dineen SM, Aranda IVR, Dietza ME, Anders DL, Robertson JM (2010) Evaluation of commercial RNA extraction kits for the isolation of viral MS2 RNA from soil. J Virol Methods 168:44–50

    Article  PubMed  CAS  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  PubMed  CAS  Google Scholar 

  • Domínguez A, Hermoso de Mendoza A, Guerri J, Cambra M, Navarro L, Moreno P, Peña L (2002) Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene. Mol Breed 10:1–10

    Article  Google Scholar 

  • Duan CG, Wang CH, Guo HS (2012) Application of RNA silencing to plant disease resistance. Silence 3:5

    Article  PubMed  CAS  Google Scholar 

  • Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O (2010) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–916

    Article  PubMed  CAS  Google Scholar 

  • Dykxhoorn DM, Palliser D, Lieberman J (2006) The silent treatment: siRNAs as small molecule drugs. Gene Ther 13:541–552

    Article  PubMed  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) (2010) SCIENTIFIC OPINION: guidance on the environmental risk assessment of genetically modified plants. EFSA J 8:1879

    Google Scholar 

  • EPA (2010) Biopesticide registration document: coat protein gene of Plum pox virus. http://www.epa.gov/oppbppd1/biopesticides/ingredients/tech_docs/brad_006354.pdf

  • Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M, Gonsalves D (2002) Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Dis 86:101–105

    Article  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 39:806–811

    Article  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of Papaya Ringspot Virus. Nat Biotech 10:1466–1472

    Article  CAS  Google Scholar 

  • Flachowsky H, Tränkner C, Szankowski I, Waidmann S, Hanke M, Treutter D, Fischer CT (2012) RNA-mediated gene silencing signals are not graft transmissible from the rootstock to the scion in greenhouse-grown apple plants malus spp. Int J Mol Sci 13:9992–10009

    Article  PubMed  CAS  Google Scholar 

  • Franchi M, Gallori E (2005) A surface-mediated origin of the RNA world: biogenic activities of clay-adsorbed RNA molecules. Gene 346:205–214

    Article  PubMed  CAS  Google Scholar 

  • Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol J 8:655–677

    Article  PubMed  CAS  Google Scholar 

  • Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Gribaudo I (2012) Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 21:1163–1181

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Perrone I, Carra A, Chitarra W, Boccacci P, Torello Marinoni D, Barberis M, Maghuly F, Laimer M, Gribaudo I (2010) Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Res 19:17–27

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves D (1998) Control of Papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Caudy AA, Hannon GJ (2001) Posttranscriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119

    Article  PubMed  CAS  Google Scholar 

  • Haroldsen V, Szczerba MW, Aktas H, Baltazar JL, Odias MJ, Chi-Ham CL, Labavitch JM, Bennett AB, Powell ALT (2012a) a.) Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement. Frontiers Plant Sci 3:39

    Google Scholar 

  • Haroldsen VM, Chi-Ham CL, Bennett AB (2012b) Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks. J Biotechnol 161:349–353

    Article  PubMed  CAS  Google Scholar 

  • Hewezi T, Alibert G, Kallerhoff J (2005) Local infiltration of high- and low-molecular-weight RNA from silenced sunflower (Helianthusannuus L.) plants triggers post-transcriptional gene silencing in non-silenced plants. Plant Biotechnol J 3:81–89

    Article  PubMed  CAS  Google Scholar 

  • Hily JM, Scorza R, Webb K, Ravelonandro M (2005) Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. Mol Plant Microbe Interact 18:794–799

    Article  PubMed  CAS  Google Scholar 

  • Hily JM, Ravelonandro M, Damsteegt V, Bassett C, Petri C, Liu Z, Scorza R (2007) Plum pox potyvirus coat protein gene intron-hairpin-RNA (ihpRNA) constructs provide resistance to Plum pox virus in Nicotiana benthamiana and Prunus domestica. J Am Soc Hort Sci 132:850–858

    CAS  Google Scholar 

  • Hohn T, Akbergenov R, Pooggin MM (2007) Production and transport of the silencing signal in transgenic and virus-infected plant systems. In: Waigmann E, Heinlein M (eds) Viral transport in plant. Springer, Berlin, pp 127–157

    Chapter  Google Scholar 

  • Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235

    Article  PubMed  CAS  Google Scholar 

  • Ilardi V, Di Nicola-Negri E (2011) Genetically engineered resistance to Plum pox virus infection in herbaceous and stone fruit hosts. GM Crops 2:24–33

    Article  PubMed  Google Scholar 

  • Ivashuta SI, Petrick JS, Heisel SE, Zhang Y, Guo L, Reynolds TL, Rice JF, Allen E, Roberts JK (2009) Endogenous small RNAs in grain: semi-quantification and sequence homology to human and animal genes. Food Chem Toxicol 47:353–360

    Article  PubMed  CAS  Google Scholar 

  • Jagtap UB, Gurav RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenschaften 98:473–492

    Article  PubMed  CAS  Google Scholar 

  • Jamoussi RJ, Winterhagen P, Bouamama B, Dubois C, Mliki A, Wetzel T, Ghorbel A, Reustle G (2009) Development and evaluation of a GFLV inverted repeat construct for genetic transformation of grapevine. Plant Cell Tiss Organ Cult 97:187–196

    Article  Google Scholar 

  • Jørgensen B, Albrechtsen M (2007) Stability of RNA silencing-based traits in potato after virus infection. Mol Breed 19:371–376

    Article  Google Scholar 

  • Kalaitzandonakes N, Alston JM, Bradfor KJ (2006) Compliance costs for regulatory approval of new biotech crops. In: Just RE, Alston JM, Zilberman D (eds) Regulating agricultural biotechnology: economics and policy. Springer, New York, pp 37–57

    Chapter  Google Scholar 

  • Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15:826–833

    Article  PubMed  CAS  Google Scholar 

  • Kasai A, Bai S, Li T, Harada T (2011) Graft-transmitted siRNA signal from the root induces visual manifestation of endogenous post-transcriptional gene silencing in the scion. PLoS ONE 6:e16895

    Article  PubMed  CAS  Google Scholar 

  • Kuiper HA, Kleter GA (2003) The scientific basis for risk assessment and regulation of genetically modified foods. Trends Food Sci Technol 14:277–293

    Article  CAS  Google Scholar 

  • Kuiper HA, Kleter GA, Noteborn HPJM, Kok EJ (2002) Substantial equivalence—an appropriate paradigm for the safety assessment of genetically modified foods? Toxicology 181–182:427–431

    Article  PubMed  Google Scholar 

  • Kuiper HA, Kok EJ, Engel KH (2003) Exploitation of molecular profiling techniques for GM food safety assessment. Curr Opin Biotechnol 14:238–243

    Article  PubMed  CAS  Google Scholar 

  • Latham JR, Wilson AK (2008) Transcomplementation and synergism in plants: implications for viral transgenes? Mol Plant Pathol 9:85–103

    PubMed  Google Scholar 

  • Laughlin KD, Power AG, Snow AA, Spencer LJ (2009) Risk assessment of genetically engineered crops: fitness effects of virus-resistance transgenes in wild Cucurbita pepo. Ecol Appl 19:1091–1101

    Article  PubMed  Google Scholar 

  • Lius S, Manshardt RM, Fitch MM, Slighthom JL, Sanford JC, Gonsalves D (1997) Pathogen-derived resistance provides papaya with effective protection against Papaya ringspot virus. Mol Breed 3:161–168

    Article  Google Scholar 

  • López C, Cervera M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi mediated protection against Citrus tristeza virus in transgenic Mexican lime. Mol Plant Pathol 11:33–41

    Article  PubMed  Google Scholar 

  • López-Moya J, Fernández-Fernández MR, Cambra M, García JA (2000) Biotechnological aspects of Plum pox virus. J Biotechnol 76:121–136

    Article  PubMed  Google Scholar 

  • Lusser M, Rodríguez-Cerezo E (2012) Comparative regulatory approaches for new plant breeding techniques workshop proceedings. EC—Joint Research Centre Institute for Prospective Technological Studies, WS proceedings. ftp.jrc.es/EURdoc/JRC68986.pdf

  • Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotech 30:231–239

    Article  CAS  Google Scholar 

  • Lynch D, Vogel D (2001) The regulation of GMOs in Europe and the United States: a case-study of contemporary European regulatory politics, council on foreign relations press. www.cfr.org/genetically-modified-organisms/regulation-gmos-europe-united-states-case-study-contemporary-european-regulatory-politics/p8688#

  • Melnyk CW, Molnar A, Baulcombe DC (2011) Intercellular and systemic movement of RNA silencing signals. EMBO J 30:3553–3563

    Article  PubMed  CAS  Google Scholar 

  • Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol 2:18

    Article  PubMed  Google Scholar 

  • Mlotshwa S, Pruss GJ, Vance V (2008) Small RNAs in viral infection and host defense. Trends Plant Sci 13:375–382

    Article  PubMed  CAS  Google Scholar 

  • Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875

    Article  PubMed  CAS  Google Scholar 

  • Molnar A, Melnyk C, Baulcombe DC (2011) Silencing signals in plants: a long journey for small RNAs. Genome Biol 12:215

    Article  PubMed  CAS  Google Scholar 

  • Monticelli S, Di Nicola-Negri E, Gentile A, Damiano C, Ilardi V (2012) Production and in vitro assessment of transgenic plums for resistance to Plum pox virus: a feasible, environmental risk-free, cost-effective approach. Ann Appl Biol 161:293–301

    Article  CAS  Google Scholar 

  • Palauqui JC, Elmayan T, Pollien JM, Vaucheret H (1997) Systemic acquired silencing: transgene specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16:4738–4745

    Article  PubMed  CAS  Google Scholar 

  • Pandolfini T, Molesini B, Avesani L, Spena A, Polverari A (2003) Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to Plum pox virus without preventing local infection. BMC Biotechnol 3:7–21

    Article  PubMed  Google Scholar 

  • Parrott W, Chassy B, Ligon J, Meyer L, Petrick J, Zhou J, Herman R, Delaney B, Levine M (2010) Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops. Food Chem Toxicol 48:1773–1790

    Article  PubMed  CAS  Google Scholar 

  • Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506

    Article  PubMed  Google Scholar 

  • Pérez-Jiménez M, Carrillo-Navarro A, Cos-Terrer J (2012) Regeneration of peach (Prunus persica L. Batsch) cultivars and Prunus persica × Prunus dulcis rootstocks via organogenesis. Plant Cell Tiss Organ Cult 108:55–62

    Article  Google Scholar 

  • Perring TM, Gruenhagen NM, Farrar CA (1999) Management of plant viral diseases through chemical control of insect vectors. Annu Rev Entomol 44:457–481

    Article  PubMed  CAS  Google Scholar 

  • Picone G, Mezzetti B, Babini E, Capocasa F, Placucci G, Capozzi F (2011) Unsupervised principal component analysis of NMR metabolic profiles for the assessment of substantial equivalence of transgenic grapes (Vitis vinifera). J Agric Food Chem 59:9271–9279

    Article  PubMed  CAS  Google Scholar 

  • Polak J, Pivalova J, Kundu J, Jokes M, Scorza R, Ravelonandro R (2008) Behaviour of transgenic Plum pox virus-resistant Prunus domestica L clone C-5 grown in the open field under a high and permanent infection pressure of the PPV-Rec strain. J Plant Pathol 90:S133–S136

    Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    PubMed  CAS  Google Scholar 

  • Pruss G, Ge X, Shi XM, Carrington JC, Vancea VB (1997) Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859–868

    Article  PubMed  CAS  Google Scholar 

  • Ramjoue C (2008) A review of regulatory issues raised by genetically modified organisms in agricolture. CAB Rev Perspect Agric Vet Sci Nutr Nat Res 3:1–10

    Google Scholar 

  • Ravelonandro M, Scorza R, Bachelier JC, Labonne G, Levy L, Damsteegt V, Callahan AM, Dunez J (1997) Resistance of transgenic Prunus domestica to Plum pox virus infection. Plant Dis 81:1231–1235

    Article  CAS  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite derived resistance-deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Scorza R, Callahan A, Levy L, Damsteegt VD, Webb K, Ravelonandro M (2001) Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the Plum pox potyvirus coat protein gene. Transgenic Res 10:201–209

    Article  PubMed  CAS  Google Scholar 

  • Scorza R, Georgi L, Callahan A, Petri C, Hily J, Dardick C, Damsteegt V, Ravelonandro M (2010) Hairpin Plum Pox virus coat protein (hpPPV-CP) structure in ‘HoneySweet’ C5 plum provides PPV resistance when genetically engineered into plum (Prunus domestica) seedlings, proceeding of the 21st international conference on virus and other graft transmissible diseases of fruit crops. Julius Kühn Archiv 427:141–146

    Google Scholar 

  • Simón-Mateo C, García JA (2011) Antiviral strategies in plants based on RNA silencing. Biochim Biophys Acta 1809:722–731

    Article  PubMed  Google Scholar 

  • Soler N, Plomer M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L (2012) Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnol J 10:597–608

    Article  PubMed  CAS  Google Scholar 

  • Souza AJ, Mendes BMJ, Filhoet FM (2007) Gene silencing: concepts, applications, and perspectives in woody plants. Sci Agric 64:645–656

    Article  Google Scholar 

  • Tecson Mendoza EM, Laurena AC, Botella JR (2008) Recent advances in the development of transgenic papaya technology. Biotechnol Annu Rev 14:423–462

    Article  PubMed  Google Scholar 

  • Tournier B, Tabler M, Kalantidis K (2006) Phloem flow strongly influences the systemic spread of silencing in GFP Nicotiana benthamiana plants. Plant J 47:383–394

    Article  PubMed  CAS  Google Scholar 

  • Uddin MN, Kim JY (2011) Non-cell-autonomous RNA silencing spread in plants. Botanical Studies 52:129–136

    CAS  Google Scholar 

  • Valat L, Fuchs M, Burrus M (2006) Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of Grapevine fanleaf virus: characterization and reaction to virus infection upon protoplast electroporation. Plant Sci 170:739–747

    Article  CAS  Google Scholar 

  • Vance V, Vaucheret H (2001) RNA silencing in plants—defense and counterdefense. Science 292:2277–2280

    Article  PubMed  CAS  Google Scholar 

  • Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of grapevine fanleaf virus. Transgenic Res 13:165–179

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2005) Non cell autonomous RNA silencing. FEBS Lett 579:5858–5871

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Tian L, Huang TS, Brown DCW, Svircev AM, Stobbs LW, Miki B, Sanfacon H (2009) The development of genetic resistance to Plum pox virus in transgenic Nicotiana benthamiana and Prunus domestica. Acta Hortic 839:665–672

    CAS  Google Scholar 

  • Wani SH, Sanghera GS (2010) Genetic engineering for viral disease management in plants. Notulae Scientia Biologicae 2:20–28

    CAS  Google Scholar 

  • Wani SH, Sanghera GS, Singh NB (2010) Biotechnology and plant disease control-role of RNA interference. Am J Plant Sci 1:55–68

    Article  CAS  Google Scholar 

  • Wu XL, Hou WC, Wang MM, Zhu XP, Li F, Zhang JD, Li XZ, Guo XQ (2008) RNA silencing-mediated resistance is related to biotic/abiotic stresses and cellular RdRp expression in transgenic tobacco plants. BMB Rep 41:376–381

    Article  PubMed  CAS  Google Scholar 

  • Zagrai I, Capote N, Ravelonandro M, Cambra M, Zagrai L, Scorza R (2008) Plum pox virus silencing of C5 transgenic plums is stable under challenge inoculation with heterologous viruses. J Plant Path 1:63–71

    Google Scholar 

  • Zagrai I, Ravelonandro M, Gaboreanu I, Ferencz B, Scorza R, Zagrai L, Kelemen B, Pamfil D, Popescu O (2011) Transgenic plums expressing Plum Pox Virus coat protein gene do not assist the development of virus recombinants under field conditions. J Plant Pathol 93:159–165

    CAS  Google Scholar 

Download references

Acknowledgments

Our studies described here were supported by the Fellowship Scheme granted by ICS UNIDO. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect the views of ICS-UNIDO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Mezzetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemgo, G.N.Y., Sabbadini, S., Pandolfini, T. et al. Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock. Transgenic Res 22, 1073–1088 (2013). https://doi.org/10.1007/s11248-013-9728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9728-1

Keywords

Navigation