Transgenic Research

, Volume 20, Issue 4, pp 939–949

Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields

  • Anna Coll
  • Anna Nadal
  • Michel Rossignol
  • Pere Puigdomènech
  • Maria Pla
Brief Communication

DOI: 10.1007/s11248-010-9453-y

Cite this article as:
Coll, A., Nadal, A., Rossignol, M. et al. Transgenic Res (2011) 20: 939. doi:10.1007/s11248-010-9453-y


Worldwide maize is the second major agricultural commodity and around one-fourth is currently biotech, with significant application of the insect resistant event MON810 particularly in the European Union. Grains are the major commercialized part of the plant, and can be harvested after maturity (for food and feed purposes) or at late milky-starchy stage (for forage uses, with the whole plant). We assessed possible proteomic unintended effects of the MON810 transgene using two-dimensional gel electrophoresis coupled to mass spectrometry. To keep in a realistic scenario we used plants grown in agricultural fields in a region where ~50% of maize was MON810, and analyzed grains at milky-starchy stage. In maize, differential transcripts and metabolites between GM and comparable non-GM varieties tend to be variety specific. Thus, we analyzed two variety pairs, DKC6575/Tietar and PR33P67/PR33P66 which are considered representative of Food and Agriculture Organization 700 and 600 varieties commercially grown in the region. MON810 and non-GM milky-starchy grains had virtually identical proteomic patterns, with a very small number of spots showing fold-variations in the 1-1.8 range. They were all variety specific and had divergent identities and functions. Although 2DE allows the analysis of a limited dataset our results support substantial equivalence between MON810 and comparable non-GM varieties.


Genetically Modified Organism (GMO)MON810ProteomeTwo-dimensional gel electrophoresis (2DE)Mass spectrometry (MS)Unexpected effectsMaize



Two-dimensional gel electrophoresis


Certified reference material


European Union


Food and Agriculture Organization


Genetically Modified Organism


Mass spectrometry


Mass spectrometry protein sequence data base


Polymerase chain reaction


Vegetative eight-leaf stage


Days after flowering

Supplementary material

11248_2010_9453_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)
11248_2010_9453_MOESM2_ESM.doc (31 kb)
Supplementary material 2 (DOC 31 kb)

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Anna Coll
    • 1
  • Anna Nadal
    • 1
  • Michel Rossignol
    • 2
  • Pere Puigdomènech
    • 3
  • Maria Pla
    • 1
  1. 1.Institute for Food and Agricultural Technology (INTEA)University of GironaGironaSpain
  2. 2.National Institute for Agricultural Research (INRA), UR1199, LPFMontpellier Cedex 01France
  3. 3.Centre for Research in Agricultural Genomics, CSIC-IRTA-UABBarcelonaSpain