Skip to main content
Log in

Monodisperse Metal Nanoparticle Catalysts: Synthesis, Characterizations, and Molecular Studies Under Reaction Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We aim to develop novel catalysts that exhibit high activity, selectivity and stability under real catalytic conditions. In the recent decades, the fast development of nanoscience and nanotechnology has allowed synthesis of nanoparticles with well-defined size, shape and composition using colloidal methods. Utilization of mesoporous oxide supports effectively prevents the nanoparticles from aggregating at high temperatures and high pressures. Nanoparticles of less than 2 nm sizes were found to show unique activity and selectivity during reactions, which was due to the special surface electronic structure and atomic arrangements that are present at small particle surfaces. While oxide support materials are employed to stabilize metal nanoparticles under working conditions, the supports are also known to strongly interact with the metals through encapsulation, adsorbate spillover, and charge transfer. These factors change the catalytic performance of the metal catalysts as well as the conductivity of oxides. The employment of new in situ techniques, mainly high-pressure scanning tunneling microscopy (HPSTM) and ambient-pressure X-ray photoelectron spectroscopy (APXPS) allows the determination of the surface structure and chemical states under reaction conditions. HPSTM has identified the importance of both adsorbate mobility to catalytic turnovers and the metal substrate reconstruction driven by gaseous reactants such as CO and O2. APXPS is able to monitor both reacting species at catalyst surfaces and the oxidation state of the catalyst while it is being exposed to gases. The surface composition of bimetallic nanoparticles depends on whether the catalysts are under oxidizing or reducing conditions, which is further correlated with the catalysis by the bimetallic catalytic systems. The product selectivity in multipath reactions correlates with the size and shape of monodisperse metal nanoparticle catalysts in structure sensitive reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis, 2nd edn. Johns Wiley & Sons, Inc., Hoboken

    Google Scholar 

  2. Somorjai GA, Aliaga C (2010) Langmuir 26:16190

    Article  CAS  Google Scholar 

  3. Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212

    Article  CAS  Google Scholar 

  4. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2004) J Phys Chem B 109:2192

    Article  CAS  Google Scholar 

  5. Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Nano Lett 8:2027

    Article  CAS  Google Scholar 

  6. Kuhn JN, Huang W, Tsung C-K, Zhang Y, Somorjai GA (2008) J Am Chem Soc 130:14026

    Article  CAS  Google Scholar 

  7. Song H, Kim F, Connor S, Somorjai GA, Yang P (2004) J Phys Chem B 109:188

    Article  CAS  Google Scholar 

  8. Wang C, Daimon H, Lee Y, Kim J, Sun S (2007) J Am Chem Soc 129:6974

    Article  CAS  Google Scholar 

  9. Wang C, Daimon H, Onodera T, Koda T, Sun S (2008) Angew Chem Int Ed 47:3588

    Article  CAS  Google Scholar 

  10. Tsung C-K, Kuhn JN, Huang W, Aliaga C, Hung L-I, Somorjai GA, Yang P (2009) J Am Chem Soc 131:5816

    Article  CAS  Google Scholar 

  11. Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Angew Chem Int Ed 45:7824

    Article  CAS  Google Scholar 

  12. Zhang Y, Grass ME, Kuhn JN, Tao F, Habas SE, Huang W, Yang P, Somorjai GA (2008) J Am Chem Soc 130:5868

    Article  CAS  Google Scholar 

  13. Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, Stensgaard I (1998) Science 279:1913

    Article  CAS  Google Scholar 

  14. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37

    Article  CAS  Google Scholar 

  15. Tao F, Grass ME, Zhang Y, Butcher DR, Aksoy F, Aloni S, Altoe V, Alayoglu S, Renzas JR, Tsung CK, Zhu Z, Liu Z, Salmeron M, Somorjai GA (2010) J Am Chem Soc 132:8697

    Article  CAS  Google Scholar 

  16. Park JY, Zhang Y, Grass M, Zhang T, Somorjai GA (2008) Nano Lett 8:673

    Article  CAS  Google Scholar 

  17. Borodko Y, Ager JW, Marti GE, Song H, Niesz K, Somorjai GA (2005) J Phys Chem B 109:17386

    Article  CAS  Google Scholar 

  18. Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, Grass ME, Yang P, Somorjai GA (2006) J Am Chem Soc 128:3027

    Article  CAS  Google Scholar 

  19. Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Nat Mater 8:126

    Article  CAS  Google Scholar 

  20. Boudart M (1969) Catalysis by supported metals. In: D.D. Eley, Pines H, Weisz PB (ed) Advances in catalysis, vol 20. p 153

  21. Spencer ND, Schoonmaker RC, Somorjai GA (1981) Nature 294:643

    Article  CAS  Google Scholar 

  22. Herz RK, Gillespie WD, Petersen EE, Somorjai GA (1981) J Catal 67:371

    Article  CAS  Google Scholar 

  23. McCrea KR, Somorjai GA (2000) J Mol Catal A: Chem 163:43

    Article  CAS  Google Scholar 

  24. Bussel ME, Gellman AJ, Somorjai GA (1988) Catal Lett 1:195

    Article  CAS  Google Scholar 

  25. Zaera F, Somorjai GA (1984) J Am Chem Soc 106:2288

    Article  CAS  Google Scholar 

  26. Kliewer CJ, Aliaga C, Bieri M, Huang W, Tsung C-K, Wood JB, Komvopoulos K, Somorjai GA (2010) J Am Chem Soc 132:13088

    Article  CAS  Google Scholar 

  27. Bratlie KM, Flores LD, Somorjai GA (2006) J Phys Chem B 110:10051

    Article  CAS  Google Scholar 

  28. Bratlie KM, Kliewer CJ, Somorjai GA (2006) J Phys Chem B 110:17925

    Article  CAS  Google Scholar 

  29. Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Nano Lett 7:3097

    Article  CAS  Google Scholar 

  30. McCrea KR, Parker JS, Somorjai GA (2002) J Phys Chem B 106:10854

    Article  CAS  Google Scholar 

  31. Su X, Cremer PS, Shen YR, Somorjai GA (1997) J Am Chem Soc 119:3994

    Article  CAS  Google Scholar 

  32. Hayek K, Kramer R, Paál Z (1997) Appl Catal A 162:1

    Article  CAS  Google Scholar 

  33. Muetterties EL, Krause MJ (1983) Angew Chem Int Ed 22:135

    Article  Google Scholar 

  34. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170

    Article  CAS  Google Scholar 

  35. Comotti M, Li W-C, Spliethoff B, Schüth F (2006) J Am Chem Soc 128:917

    Article  CAS  Google Scholar 

  36. Baker RTK, Prestridge EB, Mcvicker GB (1984) J Catal 89:422

    Article  CAS  Google Scholar 

  37. Komaya T, Bell AT, Wengsieh Z, Gronsky R, Engelke F, King TS, Pruski M (1994) J Catal 149:142

    Article  CAS  Google Scholar 

  38. Bernal S, Calvino JJ, Cauqui MA, Gatica JM, Cartes CL, Omil JAP, Pintado JM (2003) Catal Today 77:385

    Article  CAS  Google Scholar 

  39. Leyrer J, Margraf R, Taglauer E, Knozinger H (1988) Surf Sci 201:603

    Article  CAS  Google Scholar 

  40. Jochum W, Eder D, Kaltenhauser G, Kramer R (2007) Top Catal 46:49

    Article  CAS  Google Scholar 

  41. Emmett PH (1940) Physical adsorption in the study of the catalyst surface. In: Twelfth Report of the Committee on Catalysis, National Research Council. John Wiley & Sons: New York, p 53

  42. Kuriacose J (1957) Indian J Chem 5:646

    Google Scholar 

  43. Taylor H (1961) Annu Rev Phys Chem 12:127

    Article  CAS  Google Scholar 

  44. Takakusagi S, Fukui K, Tero R, Asakura K, Iwasawa Y (2010) Langmuir 26:16392

    Article  CAS  Google Scholar 

  45. Fung SC (1982) J Catal 76:225

    Article  CAS  Google Scholar 

  46. Sexton BA, Hughes AE, Foger K (1982) J Catal 77:85

    Article  CAS  Google Scholar 

  47. Ponec V (1982) On some real and apparent carrier effects in catalysis by metals. In: Imelik B, Naccache C, Coudurier G et al (eds) Studies in surface science and catalysis, vol 11. Elsevier, Amsterdam, p 63

    Google Scholar 

  48. Smith JR, Arlinghaus FJ, Gay JG (1982) Phys Rev B 26:1071

    Article  CAS  Google Scholar 

  49. Resasco DE, Haller GL (1983) J Catal 82:279

    Article  CAS  Google Scholar 

  50. Sze SM, Crowell CR, Carey GP, Labate EE (1966) J Appl Phys 37:2690

    Article  CAS  Google Scholar 

  51. Park JY, Somorjai GA (2006) J Vac Sci Technol, B: Microelectron Nanomet 24:1967

    Article  CAS  Google Scholar 

  52. Hervier A, Renzas JR, Park JY, Somorjai GA (2009) Nano Lett 9:3930

    Article  CAS  Google Scholar 

  53. Baker LR, Hervier A, Seo H, Kennedy G, Komvopoulos K, Somorjai GA (2011) J Phys Chem C 115:16006

    Article  CAS  Google Scholar 

  54. Hervier A, Baker LR, Komvopoulos K, Somorjai GA (2011) J Phys Chem C 115:22960

    Article  CAS  Google Scholar 

  55. Cronemeyer DC (1959) Phys Rev 1:1222

    Article  Google Scholar 

  56. Bilmes SA, Mandelbaum P, Alvarez F, Victoria NM (2000) J Phys Chem B 104:9851

    Article  CAS  Google Scholar 

  57. Seo H, Baker LR, Hervier A, Kim J, Whitten JL, Somorjai GA (2011) Nano Lett 11:751

    Article  CAS  Google Scholar 

  58. Ertl G (1990) Angew Chem Int Ed 29:1219

    Article  Google Scholar 

  59. Freund HJ, Kuhlenbeck H, Libuda J, Rupprechter G, Bäumer M, Hamann H (2001) Top Catal 15:201

    Article  CAS  Google Scholar 

  60. Aliaga C, Tsung CK, Alayoglu S, Komvopoulos K, Yang P, Somorjai GA (2011) J Phys Chem C 115:8104

    Article  CAS  Google Scholar 

  61. Borodko Y, Thompson CM, Huang W, Yildiz HB, Frei H, Somorjai GA (2011) J Phys Chem C 115:4757

    Article  CAS  Google Scholar 

  62. Li Y, Liu JH-C, Witham CA, Huang W, Marcus MA, Fakra SC, Alayoglu P, Zhu Z, Thompson CM, Arjun A, Lee K, Gross E, Toste FD, Somorjai GA (2011) J Am Chem Soc 133:13527

    Article  CAS  Google Scholar 

  63. Zheng F, Alayoglu S, Guo J, Pushkarev V, Li Y, Glans PA, Chen JL, Somorjai GA (2011) Nano Lett 11:847

    Article  CAS  Google Scholar 

  64. Joyner RW, Roberts MW, Yates K (1979) Surf Sci 87:501

    Article  CAS  Google Scholar 

  65. Salmeron M, Schlögl R (2008) Surf Sci Rep 63:169

    Article  CAS  Google Scholar 

  66. Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M (2002) Rev Sci Instrum 73:3872

    Article  CAS  Google Scholar 

  67. Grass ME, Karlsson PG, Aksoy F, Lundqvist M, Wannberg B, Mun BS, Hussain Z, Liu Z (2010) Rev Sci Instrum 81:053106

    Article  CAS  Google Scholar 

  68. Aksoy F, Grass ME, Joo SH, Jabeen N, Hong YP, Hussain Z, Mun BS, Liu Z (2011) Nucl Instrum Methods Phys Res. Sect A 645:260

    CAS  Google Scholar 

  69. Montano M, Bratlie KM, Salmeron M, Somorjai GA (2006) J Am Chem Soc 128:13229

    Article  CAS  Google Scholar 

  70. Ketteler G, Ogletree DF, Bluhm H, Liu H, Hebenstreit ELD, Salmeron M (2005) J Am Chem Soc 127:18269

    Article  CAS  Google Scholar 

  71. Haubrich J, Quiller RG, Benz L, Liu Z, Friend CM (2010) Langmuir 26:2445

    Article  CAS  Google Scholar 

  72. Deng X, Lee J, Wang C, Matranga C, Aksoy F, Liu Z (2010) J Phys Chem C 114:22619

    Article  CAS  Google Scholar 

  73. El Gabaly F, Grass ME, McDaniel AH, Farrow RL, Linne MA, Hussain Z, Bluhm H, Liu Z, McCarty KF (2010) Phys Chem Chem Phys 12:12138

    Article  CAS  Google Scholar 

  74. Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) Angew Chem Int Ed 47:8893

    Article  CAS  Google Scholar 

  75. Jiang P, Porsgaard S, Borondics F, Köber M, Caballero A, Bluhm H, Besenbacher F, Salmeron M (2010) J Am Chem Soc 132:2858

    Article  CAS  Google Scholar 

  76. Zhang C, Grass ME, McDaniel AH, DeCaluwe SC, El Gabaly F, Liu Z, McCarty KF, Farrow RL, Linne MA, Hussain Z, Jackson GS, Bluhm H, Eichhorn BW (2010) Nat Mater 9:944

    Article  CAS  Google Scholar 

  77. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322:932

    Article  CAS  Google Scholar 

  78. Renzas JR, Huang W, Zhang Y, Grass ME, Hoang DT, Alayoglu S, Butcher DR, Tao F, Liu Z, Somorjai GA (2010) Phys Chem Chem Phys 13:2556

    Article  CAS  Google Scholar 

  79. Grass ME, Park M, Aksoy F, Zhang Y, Kunz M, Liu Z, Mun BS (2010) Langmuir 26:16362

    Article  CAS  Google Scholar 

  80. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Appl Phys Lett 40:178

    Article  CAS  Google Scholar 

  81. Binnig G, Rohrer H, Gerber C, Weibel E (1983) Phys Rev Lett 50:120

    Article  CAS  Google Scholar 

  82. Hallmark VM, Chiang S, Rabolt JF, Swalen JD, Wilson RJ (1987) Phys Rev Lett 59:2879

    Article  CAS  Google Scholar 

  83. Wintterlin J, Wiechers J, Brune H, Gritsch T, Höfer H, Behm RJ (1989) Phys Rev Lett 62:59

    Article  CAS  Google Scholar 

  84. McIntyre BJ, Salmeron M, Somorjai GA (1993) J Vac Sci Technol. A 11:1964

    CAS  Google Scholar 

  85. Lægsgaard E, Österlund L, Thostrup P, Rasmussen PB, Stensgaard I, Besenbacher F (2001) Rev Sci Instrum 72:3537

    Article  CAS  Google Scholar 

  86. Kolmakov A, Goodman DW (2003) Rev Sci Instrum 74:2444

    Article  CAS  Google Scholar 

  87. Rasmussen PB, Hendriksen BLM, Zeijlemaker H, Ficke HG, Frenken JWM (1998) Rev Sci Instrum 69:3879

    Article  CAS  Google Scholar 

  88. Rößler M, Geng P, Wintterlin J (2005) Rev Sci Instrum 76

  89. Tao F, Tang DC, Salmeron M, Somorjai GA (2008) Rev Sci Instrum 79

  90. Rider KB, Hwang KS, Salmeron M, Somorjai GA (2001) Phys Rev Lett 86:4330

    Article  CAS  Google Scholar 

  91. Longwitz SR, Schnadt J, Vestergaard EK, Vang RT, Laegsgaard E, Stensgaard I, Brune H, Besenbacher F (2004) J Phys Chem B 108:14497

    Article  CAS  Google Scholar 

  92. Reichelt R, Günther S, Rößler M, Wintterlin J, Kubias B, Jakobi B, Schlögl R (2007) Phys Chem Chem Phys 9:3590

    Article  CAS  Google Scholar 

  93. Montano M, Salmeron M, Somorjai GA (2006) Surf Sci 600:1809

    Article  CAS  Google Scholar 

  94. Tang DC, Hwang KS, Salmeron M, Somorjai GA (2004) J Phys Chem B 108:13300

    Article  CAS  Google Scholar 

  95. Österlund L, Rasmussen PB, Thostrup P, Lægsgaard E, Stensgaard I, Besenbacher F (2001) Phys Rev Lett 86:460

    Article  CAS  Google Scholar 

  96. Thostrup P, Christoffersen E, Lorensen HT, Jacobsen KW, Besenbacher F, Nørskov JK (2001) Phys Rev Lett 87:126102

    Article  CAS  Google Scholar 

  97. Merte LR, Knudsen J, Eichhorn FM, Porsgaard S, Zeuthen H, Grabow LC, Lægsgaard E, Bluhm H, Salmeron M, Mavrikakis M, Besenbacher F (2011) J Am Chem Soc 133:10692

    Article  CAS  Google Scholar 

  98. Tao F, Dag S, Wang LW, Liu Z, Butcher DR, Bluhm H, Salmeron M, Somorjai GA (2010) Science 327:850

    Article  CAS  Google Scholar 

  99. Tao F, Dag S, Wang LW, Liu Z, Butcher DR, Salmeron M, Somorjai GA (2009) Nano Lett 9:2167

    Article  CAS  Google Scholar 

  100. Vestergaard EK, Vang RT, Knudsen J, Pedersen T, An T, Lægsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Phys Rev Lett 95:126101

    Article  CAS  Google Scholar 

  101. Hendriksen BLM, Bobaru SC, Frenken JWM (2004) Surf Sci 552:229

    Article  CAS  Google Scholar 

  102. Herbschleb CT, Bobaru SC, Frenken JWM (2010) Catal Today 154:61

    Article  CAS  Google Scholar 

  103. Thostrup P, Vestergaard EK, An T, Lægsgaard E, Besenbacher F (2003) J Chem Phys 118:3724

    Article  CAS  Google Scholar 

  104. Witham CA, Huang W, Tsung C-K, Kuhn JN, Somorjai GA, Toste FD (2009) Nat Chem 2:36

    Article  CAS  Google Scholar 

  105. Huang W, Liu JH-C, Alayoglu P, Li Y, Witham CA, Tsung C-K, Toste FD, Somorjai GA (2010) J Am Chem Soc 132:16771

    Article  CAS  Google Scholar 

  106. Yamada Y, Tsung C-K, Huang W, Huo Z, Habas SE, Soejima T, Aliaga CE, Somorjai GA, Yang P (2011) Nat Chem 3:372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and a grant from Chevron Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pushkarev, V.V., Zhu, Z., An, K. et al. Monodisperse Metal Nanoparticle Catalysts: Synthesis, Characterizations, and Molecular Studies Under Reaction Conditions. Top Catal 55, 1257–1275 (2012). https://doi.org/10.1007/s11244-012-9915-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9915-y

Keywords

Navigation