Skip to main content
Log in

Reactions of Propylene Oxide on Supported Silver Catalysts: Insights into Pathways Limiting Epoxidation Selectivity

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The reactions of propylene oxide (PO) on silver catalysts were studied to understand the network of parallel and sequential reactions that may limit the selectivity of propylene epoxidation by these catalysts. The products of the anaerobic reaction of PO on Ag/α-Al2O3 were propanal, acetone and allyl alcohol for PO conversions below 2–3%. As the conversion of PO was increased either by increasing the temperature or the contact time, acrolein was formed at the expense of propanal, indicating that acrolein is a secondary reaction product in PO decomposition. With addition of oxygen to the feedstream the conversion of PO increased moderately. In contrast to the experiments in absence of oxygen, CO2 was a significant product while the selectivity to propanal decreased as soon as oxygen was introduced in the system. Allyl alcohol disappeared completely from the product stream in the presence of oxygen, reacting to form acrolein and CO2. The product distribution may be explained by a network of reactions involving two types of oxametallacycles formed by ring opening of PO: one with the oxygen bonded to C1 (OMC1, linear) and the other with oxygen bonded to C2 (OMC2, branched). OMC1 reacts to form PO, propanal, and allyl alcohol. OMC2 can give rise to acetone and PO. (DFT) calculations have verified accessibility to the two oxametallacycle structures from propylene and PO, and have provided energy barriers for each of the steps involved in PO isomerization. This work illustrates the complex manifold of sequential reactions that contribute to the difficulty of achieving high selectivity in direct propylene epoxidation with silver catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. SRI Consulting (2011) World Petrochemicals Report

  2. Weissermel K, Arpe H-J (1993) Industrial organic chemistry, 2nd edn. VCH, Weinheim

    Google Scholar 

  3. Sheldon RA (1980) J Mol Catal 7:107

    Article  CAS  Google Scholar 

  4. Zemichael FW, Palermo A, Tikhov MS, Lambert RM (2002) Catal Lett 80:93

    Article  CAS  Google Scholar 

  5. Cooker B, Gaffney AM, Onimus WH, Jewson JD (1998) US Patent 5,780,657, assigned to Arco Chemical Technology

  6. Gaffney AM, Cooker B, Onimus WH, Jewson JD (1999) US Patent 5,965,480, assigned to Arco Chemical Technology

  7. Barteau MA, Madix RJ (1983) J Am Chem Soc 105:344

    Article  CAS  Google Scholar 

  8. Cooker B, Gaffney AM, Jewson JD, Kahn AP, Pitchai R (1998) US Patent 5,770,746, assigned to Arco Chemical Technology

  9. Monnier JR, Peters KT, Hartley GW (2004) J Catal 225:374–380

    Article  CAS  Google Scholar 

  10. Linic S, Barteau MA (2008) Chapter 14.11.6. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) The Handbook of Heterogeneous Catalysis, vol 7, 2nd edn. Wiley-VCH, pp 3448–3464

  11. Linic S, Barteau MA (2003) J Am Chem Soc 125:4034

    Article  CAS  Google Scholar 

  12. Linic S, Barteau MA (2004) J Am Chem Soc 126:8086

    Article  CAS  Google Scholar 

  13. Medlin JW, Barteau MA, Vohs JM (2000) J Mol Catal A 163:129

    Article  CAS  Google Scholar 

  14. Monnier JR (1997) Stud Surf Sci Catal 110:135

    Article  CAS  Google Scholar 

  15. Medlin JW, Monnier JR, Barteau MA (2001) J Catal 204:71–76

    Article  CAS  Google Scholar 

  16. Piao H, Enever MCN, Adib K, Hrbek J, Barteau MA (2004) Surf Sci 571:139

    Article  CAS  Google Scholar 

  17. Medlin JW, Mavrikakis M, Barteau MA (1999) J Phys Chem B 103:11169–11175

    Article  CAS  Google Scholar 

  18. Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlogl R, Pellin MJ, Curtiss LA, Vajda S (2010) Science 328:224–228

    Article  CAS  Google Scholar 

  19. Manara G, Parravano G (1974) J Catal 32:72–79

    Article  CAS  Google Scholar 

  20. Linic S, Jankowiak J, Barteau MA (2004) J Catal 224:489–493

    Article  CAS  Google Scholar 

  21. Dellamorte JC, Lauterbach J, Barteau MA (2010) Top Catal 53:13–18

    Article  CAS  Google Scholar 

  22. Dellamorte JC, Lauterbach J, Barteau MA (2011) Appl Catal A: Gen 391:281–288

    Article  CAS  Google Scholar 

  23. Dellamorte JC, Barteau MA, Lauterbach J (2009) Surf Sci 603:1770

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  26. Neugebauer J, Scheffler M (1992) Phys Rev B 46:16067–16080

    Article  CAS  Google Scholar 

  27. Bengtsson L (1999) Phys Rev B 59:12301–12304

    Article  CAS  Google Scholar 

  28. Ashcroft NW, Mermin ND (1976) Solid State Physics. Holt, Rinehart and Winston, New York

    Google Scholar 

  29. Blochl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  30. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  31. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  32. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  33. White JA, Bird DM (1994) Phys Rev B 50:4954–4957

    Article  CAS  Google Scholar 

  34. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  35. Greeley J, Mavrikakis M (2003) Surf Sci 540:215–229

    Article  CAS  Google Scholar 

  36. Torres D, Lopez N, Illas F, Lambert RM (2007) Angew Chem Int Ed 46:2055–2058

    Article  CAS  Google Scholar 

  37. Yao W, Guo Y, Liu X, Guo Y, Wang Y, Wang Y, Zhang Z, Lu G (2007) Catal Lett 119:185–190

    Article  CAS  Google Scholar 

  38. Lu J, Bravo-Suárez JJ, Takahashi A, Haruta M, Oyama ST (2005) J Catal 232:85–95

    Article  CAS  Google Scholar 

  39. Luo M, Lu J, Li C (2003) Catal Lett 86:43–49

    Article  CAS  Google Scholar 

  40. Bettahar MM, Costentin G, Savary L, Lavalley JC (1996) Appl Catal A: Gen 145:1–48

    Article  CAS  Google Scholar 

  41. Takahashi A, Hamakawa N, Nakamura I, Fujitani T (2005) Appl Catal A: Gen 294:34–39

    Article  CAS  Google Scholar 

  42. NIST Webbook (2011) http://webbook.nist.gov/chemistry

  43. Yaws CL (1999) Chemical properties handbook. McGraw Hill

  44. Claus P (1998) Top Catal 5:51

    Article  CAS  Google Scholar 

  45. Brandt K, Chiu ME, Watson DJ, Tikhov MS, Lambert RM (2009) J Am Chem Soc 131:17286

    Article  CAS  Google Scholar 

  46. Liu X, Madix RJ, Friend CM (2008) Chem Soc Rev 37:2243

    Article  CAS  Google Scholar 

  47. Solomon JL, Madix RJ (1987) J Phys Chem 91:6241–6244

    Article  CAS  Google Scholar 

  48. Lukaski A, Barteau M (2009) Catal Lett 128:9–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the US Department of Energy through Grant DE-FG02-03ER15468. Computational work at UW benefited from access to supercomputing facilities at: EMSL-PNL, sponsored by DOE-BER, and NERSC, CNM-ANL, and CNMS-ORNL all three sponsored by DOE, Office of Science. We congratulate Professor Harold H. Kung for winning the Gabor A. Somorjai Award for Creative Research in Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Barteau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 860 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, A., Bedolla-Pantoja, M., Singh, S. et al. Reactions of Propylene Oxide on Supported Silver Catalysts: Insights into Pathways Limiting Epoxidation Selectivity. Top Catal 55, 3–12 (2012). https://doi.org/10.1007/s11244-012-9773-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9773-7

Keywords

Navigation