Skip to main content
Log in

Synthesis of nanodispersed oxides of vanadium, titanium, molybdenum, and tungsten on mesoporous silica using atomic layer deposition

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

The advantages of the atomic layer deposition (ALD) method for preparation of tungsten, vanadium, titanium, and molybdenum oxide catalyst supported on mesoporous silica are discussed, with emphasis on the importance of synthesis conditions on dispersion, structure and activity of the resulting materials. A suite of complementary techniques such as DRS-UV/Vis, BET, 1H-NMR, XRD, and TEM were used to study the structural properties of the supported metal oxides, and probe reactions such as 2-butanol dehydration and ethanol partial oxidation were used to demonstrate the potential advantages of the ALD-prepared catalysts. Specifically, highly dispersed oxides of titanium, molybdenum, and tungsten oxide on mesoporous silica were synthesized using the ALD method. It is also demonstrated that attainment of high dispersions of vanadium oxide on mesoporous silica requires the presence of at least a single layer of titanium oxide due to the well-known poor interaction between vanadia and silica. The highly dispersed catalysts prepared here by ALD methods exhibited superior catalytic performance relative to those prepared using conventional incipient wetness impregnation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Suntola and J. Antson, US Patent no. 4,058,430 (1977)

  2. T Suntola (1996) Appl. Surf. Sci. 100/101 391 Occurrence Handle1:CAS:528:DyaK28XkslCltbo%3D Occurrence Handle10.1016/0169-4332(96)00306-6

    Article  CAS  Google Scholar 

  3. L. Niinistö, Curr. Opin. Solid State Mater. (1998) 147

  4. S. Auca A. KytSkivi E.-L. Lakomaa U. Lehtovirta M. Lindblad V. Lujala T. Suntola (1995) Stud. Surf. Sci. Catal. 91 966

    Google Scholar 

  5. S. Haukka E.-L. Lakomaa T. Suntola (1998) Stud. Surf. Sci. Catal. 120 715

    Google Scholar 

  6. J. Keränen E. Iiskola C. Guimon A. Auroux L. Niinistö (2002) Stud. Surf. Sci. Catal. 143 777 Occurrence Handle10.1016/S0167-2991(00)80721-1

    Article  Google Scholar 

  7. E.-L. Lakomaa A. Root T. Suntola (1996) Appl. Surf. Sci. 107 107 Occurrence Handle1:CAS:528:DyaK28Xms1arurk%3D Occurrence Handle10.1016/S0169-4332(96)00513-2

    Article  CAS  Google Scholar 

  8. R.L. Puurunen A. Root P. Sarv M.M. Viitanen H.H. Brongersma M. Lindblad A.O.I. Krause (2002) Chem. Mater. 14 720 Occurrence Handle1:CAS:528:DC%2BD38XnvVGmtA%3D%3D Occurrence Handle10.1021/cm011176i

    Article  CAS  Google Scholar 

  9. A. Rautiainen M. Lindblad L.B. Backman R.L. Puurunen (2002) Phys. Chem. Chem. Phys. 4 2466 Occurrence Handle1:CAS:528:DC%2BD38XjslOntLo%3D Occurrence Handle10.1039/b201168a

    Article  CAS  Google Scholar 

  10. M. Lindblad S. Haukka A. Kytökivi E.L. Lakomaa A. Rautiainen T. Suntola (1997) Appl. Surf. Sci. 121/122 286 Occurrence Handle1:CAS:528:DyaK2sXmsVKhtb0%3D Occurrence Handle10.1016/S0169-4332(97)00307-3

    Article  CAS  Google Scholar 

  11. A. KytSkivi E.-L. Lakomaa A. Root (1996) Langmuir 12 4395 Occurrence Handle10.1021/la960198u

    Article  Google Scholar 

  12. A. Gervasinia P. Carnitia J. Keränen L. Niinistö A. Auroux (2004) Catal. Today 96 187 Occurrence Handle10.1016/j.cattod.2004.06.142 Occurrence Handle1:CAS:528:DC%2BD2cXnvVOhtL0%3D

    Article  CAS  Google Scholar 

  13. J. Keränen A. Auroux S. Ek-Härkönen L. Niinistö (2001) Thermochim. Acta 379 233 Occurrence Handle10.1016/S0040-6031(01)00621-9

    Article  Google Scholar 

  14. Y. Wang, K.Y. Lee, S. Choi and C.H.F. Peden, Proceedings 17th NACS, Toronto, Ontario, Canada. June 3–8 (2001), p. 169

  15. S. Choi Y. Wang Z. Nie J. Liu C.H.F. Peden (2000) Catal. Today 55 117 Occurrence Handle1:CAS:528:DyaK1MXnvVWitrw%3D Occurrence Handle10.1016/S0920-5861(99)00231-X

    Article  CAS  Google Scholar 

  16. Y. Wang C.H.F. Peden S. Choi (2001) Catal. Lett. 75 169 Occurrence Handle1:CAS:528:DC%2BD3MXotFOrsLg%3D Occurrence Handle10.1023/A:1016787820827

    Article  CAS  Google Scholar 

  17. D. Zhao J. Feng Q. Huo N. Melosh G.H. Fredrickson B.F. Chmelka G.D. Stucky (1998) Science 279 548 Occurrence Handle1:CAS:528:DyaK1cXotVOitQ%3D%3D Occurrence Handle10.1126/science.279.5350.548

    Article  CAS  Google Scholar 

  18. A.J. Hengstum ParticleVan J.G. Ommen ParticleVan H. Bosch P.J. Gellings (1983) Appl. Catal. 5 207 Occurrence Handle10.1016/0166-9834(83)80133-X

    Article  Google Scholar 

  19. D.G. Barton M. Shtein R.D. Wilson S.L. Soled E. Iglesia (1999) J. Phys. Chem. B 103 630 Occurrence Handle1:CAS:528:DyaK1MXhslOksw%3D%3D Occurrence Handle10.1021/jp983555d

    Article  CAS  Google Scholar 

  20. A. Gutiérrez-Alejandre P. Castillo J. Ramirez G. Ramis G. Busca (2001) App. Catal. A. Gen. 216 181 Occurrence Handle10.1016/S0926-860X(01)00557-9

    Article  Google Scholar 

  21. A. Khodakov J. Yang S. Su E. Iglesia A.T. Bell (1998) J. Catal. 177 343 Occurrence Handle1:CAS:528:DyaK1cXltVKqt7c%3D Occurrence Handle10.1006/jcat.1998.2143

    Article  CAS  Google Scholar 

  22. D. Wei and G.L. Haller, Proceedings 2nd Memorial G. K. Boreskov Intern. Conference, Novosibirsk, July (1997), p. 110

  23. E.A. Davis N.F. Mott (1970) Philos. Mag. 22 903 Occurrence Handle1:CAS:528:DyaE3cXltlGhsrc%3D

    CAS  Google Scholar 

  24. R.S. Weber (1995) J. Catal. 151 470 Occurrence Handle1:CAS:528:DyaK2MXjtlCns7Y%3D Occurrence Handle10.1006/jcat.1995.1052

    Article  CAS  Google Scholar 

  25. J.Z. Hu J.H. Kwak J.E. Herrera Y. Wang C.H.F. Peden (2005) Solid State Nucl. Magn. Reson. 27 200 Occurrence Handle1:CAS:528:DC%2BD2MXoslCgtQ%3D%3D Occurrence Handle10.1016/j.ssnmr.2004.11.004

    Article  CAS  Google Scholar 

  26. A.A. Hossein C.A. Hogarth J. Beynon (1994) J. Mater. Sci. Lett. 13 1144 Occurrence Handle1:CAS:528:DyaK2cXmsVSrsbg%3D Occurrence Handle10.1007/BF00633540

    Article  CAS  Google Scholar 

  27. X. Gao I.E. Wachs (2000) J. Phys. Chem. B 104 1261 Occurrence Handle1:CAS:528:DC%2BD3cXltVymug%3D%3D Occurrence Handle10.1021/jp992867t

    Article  CAS  Google Scholar 

  28. G.A. Khan C.A. Hogarth (1991) J. Mater. Sci. Lett. 26 412 Occurrence Handle1:CAS:528:DyaK3MXhtFWjsLc%3D

    CAS  Google Scholar 

  29. J.H. Kwak, J.E. Herrera, J.Z. Hu, Y. Wang and C.H.F. Peden, Appl. Catal. A (in press)

  30. G.E. Maciel and P. D. Ellis, in: NMR Techniques in Catalysis, eds. A.T. Bell and A. Pines (Marcel Dekker Inc, New York, 1994), p. 231

  31. J.M. Miller L.J. Lakshmi (2000) Appl. Catal. A. Gen. 190 197 Occurrence Handle1:CAS:528:DC%2BD3cXlsFSrtQ%3D%3D Occurrence Handle10.1016/S0926-860X(99)00296-3

    Article  CAS  Google Scholar 

  32. K.J.D. Mackenzie M.E. Smith (2002) Multinuclear Solid State NMR of Inorganic Materials Pergamon New York

    Google Scholar 

  33. Y. Wang Q. Cheng W. Yang Z. Xie W. Xu D. Huang (2003) Appl. Catal. A. 250 5 Occurrence Handle10.1016/S0926-860X(03)00680-X Occurrence Handle1:CAS:528:DC%2BD3sXntVersbg%3D

    Article  CAS  Google Scholar 

  34. M.H. Lim A. Stein (1999) Chem. Mater. 11 3285 Occurrence Handle1:CAS:528:DyaK1MXmt1Kls74%3D Occurrence Handle10.1021/cm990369r

    Article  CAS  Google Scholar 

  35. J.E. Herrera, J.H. Kwak, J.Z. Hu, Y. Wang, C.H.F. Peden, J. Macht and E. Iglesia, J. Catal. submitted

  36. C.D. Baertsch K.T. Komala Y.-H. Chua E. Iglesia (2002) J. Catal. 205 44 Occurrence Handle1:CAS:528:DC%2BD3MXpt1aqtb0%3D Occurrence Handle10.1006/jcat.2001.3426

    Article  CAS  Google Scholar 

  37. H. Knozinger R. Kohne (1966) J. Catal. 5 264 Occurrence Handle10.1016/S0021-9517(66)80007-6

    Article  Google Scholar 

  38. H. Knozinger H. Buhl K. Kochloefl (1972) J. Catal. 24 57 Occurrence Handle10.1016/0021-9517(72)90007-3

    Article  Google Scholar 

  39. S.T. Oyama G.A. Somorjai (1991) Catal. Sci. Technol. 1 219

    Google Scholar 

  40. N.E. Quranta J. Soria V. Cortes Corberan J.L.G. Fierro (1997) J. Catal. 171 1 Occurrence Handle10.1006/jcat.1997.1760

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose E. Herrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera, J.E., Kwak, J.H., Hu, J.Z. et al. Synthesis of nanodispersed oxides of vanadium, titanium, molybdenum, and tungsten on mesoporous silica using atomic layer deposition. Top Catal 39, 245–255 (2006). https://doi.org/10.1007/s11244-006-0063-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0063-0

Keywords

Navigation