Skip to main content
Log in

Multi-continuum Approach to Modelling Shale Gas Extraction

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Production rates in horizontal shale gas wells display declines that are controlled by the low permeability and the intrinsic heterogeneity of the shale matrix. We present an original multi-continuum approach that yields a physical model able to reproduce the complexity of the decreasing gas rates. The model describes the dynamics of gas rate as function of the physical reservoir parameters and geometry, while the shale matrix heterogeneity is accounted for by a stochastic description of transmissivity field. From the 3D (Dimensional) problem setting, including the heterogeneous shale matrix, the fractures generated by the hydrofracking operations, as well as the production well characteristics, we establish an effective upscaled 1D model for the gas pressures in fracture and matrix as well as the volumetric flux. We analyse the decline curves behaviour, and we identify the time scales that characterize the dynamics of the gas rate decline using explicit analytical Laplace space solutions of the upscaled process model. Asymptotically, the flux curves decrease exponentially, while in an intermediate regime we find a power-law behaviour, in which the flux scales with a power law in time as \(t^{-\beta }\), where \(\beta \) reflects the medium heterogeneity. We use this solution to fit a set of real data displaying distinctly different decline trends and study the sensitivity of the model to the reservoir parameters in order to identify their respective controls at the different stages of the decline curve dynamics. Results indicate that the initial value of the gas rate is determined by the transmissivity of the fractures and the initial pressure of the gas in the shale matrix. The latter causes mainly a shift in the entire decline curve. The early time of decline curve shape is primarily controlled by the fracture properties (compressibility and transmissivity). During the main part of the economically valuable production times, i.e. before the production rate drops exponentially, the decline curve is strongly controlled by the properties of the shale rocks including their heterogeneity, which is modelled by two parameters describing the non-Fickian pressure diffusion effects in a stochastic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(a, b_i\) :

Rock and fluid compressibility (\(\hbox {Pa}^{-1}\))

\( k\) :

Permeability (\(\hbox {L}^{2}\))

\(N_\mathrm{f} \) :

Number of fracture stages (\(-\))

\( p_\mathrm{w}\) :

Pressure in the horizontal well (\(\hbox {M L}^{-1}\hbox { T}^{-2}\))

\(\overline{p}\) :

spatially averaged pressure (\(\hbox {M L}^{-1}\hbox { T}^{-2}\))

\(\langle \overline{p} \rangle \) :

Mean pressure averaged spatially and stochastically (\(\hbox {M L}^{-1}\hbox { T}^{-2}\))

\(Q\) :

Gas rate production (\(\hbox {L}^{3}\hbox { T}^{-1}\))

\(r\) :

Radial distance from the edge of horizontal well (L)

\(r_\mathrm{w}\) :

Radius of horizontal well (L)

\(R\) :

Radial extension of the fractured zone (L)

\(s\) :

Effective compressibility (\(\hbox {Pa}^{-1}\))

\(t\) :

Time (T)

\(t_\mathrm{f}\) :

Mean diffusion time in the fractured zone (T)

\(t_\mathrm{m}\) :

Mean diffusion time over the thickness of the matrix (T)

\(z\) :

Local spatial distance from the fractured zone (L)

\(\alpha \) :

Outflow constant [ \(\hbox {L}^{-3}\hbox { T}^{-1}\hbox { M}\))

\(\beta \) :

Exponent of truncated power-law distribution (\(-\))

\( \mu \) :

Viscosity (\(\hbox {M T}^{-2}\))

\( \lambda \) :

Laplace variable (\(\hbox {T}^{-1}\))

\(\rho _i\) :

Density (\(\hbox {M L}^{-3}\))

\(\tau _1\) :

Lower limit truncated power-law distribution (T)

\(\tau _2\) :

Cut-off truncated power-law distribution (T)

\(\tau _{a}\) :

Activation time of the drainage matrix (T)

\(\varphi \) :

Memory function of the multi-continuum model (\(\hbox {T}^{-1}\))

\(K_i = k_i/\mu _i\) :

Permeability divided by viscosity (\(\hbox {L}^{3}\hbox { M}^{-1}\hbox { T}\))

\(S_i=z_i s_i\) :

Total effective compressibility (\(\hbox {m Pa}^{-1}\))

\(T_i=z_i K_i\) :

Effective transmissivity (\(\hbox {L}^{4}\hbox { M}^{-1}\hbox { T}\))

References

  • Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)

    Google Scholar 

  • Araya, A., Ozkan, E.: An account of decline-type-curve analysis of vertical, fractured, and horizontal well production data. In: SPE-77690, vol 77690 (2002)

  • Arps, J.: Anamysis of decline curves. In: SPE-945228-G Transactions of AIM, vol 160, pp. 228–247 (1945)

  • Bai, M., Elsworth, D., Roegiers, J.C.: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour. Res. 29(6), 1621–1633 (1993)

    Article  Google Scholar 

  • Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. PMM 24(5), 825–864 (1960)

    Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porosu Media, dover edn. American Elsevier, New York (1972)

    Google Scholar 

  • Bello, R.O., Wattenbarger, R.A.: Modelling and analysis of shale gas production with a skin effect. SPE J. Can. Pet. Technol. 49(12), 143,229 (2010). doi:10.2118/143229-PAContent

    Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(RG2003), RG2003 (2006). doi:10.1029/2005RG000178.1.INTRODUCTION

    Google Scholar 

  • Bourdet, D., Gringarten, A.C.: Determination of fissure volume and block size in fractured reservoirs by type-curve analysis. In: SPE annual technical conference and exhibition, 21–24 September, Dallas, TX. Society of Petroleum Engineers, Dallas, TX (1980). doi:10.2118/9293-MS

  • Carlson, E., Mercer, J.: Devonian shale gas production: mechanisms and simple models. J. Pet. Technol. 43(4) (1991). doi:10.2118/19311-PA. http://www.onepetro.org/mslib/servlet/onepetropreview?id=00019311&soc=SPE

  • Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimerà, J.: On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol. J. 6(1), 178–190 (1998). doi:10.1007/s100400050143

    Article  Google Scholar 

  • Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, vol. 36. Oxford University Press, Oxford (1947). doi:10.2307/3610347

    Google Scholar 

  • Cortis, A., Berkowitz, B.: Computing “anomalous” contaminant transport in porous media: the CTRW MATLAB toolbox. Ground Water 43(6), 947–950 (2005). doi:10.1111/j.1745-6584.2005.00045.x

    Article  Google Scholar 

  • Dykhuizen, C.R.: Transport of solutes through unsaturated fractured media. Water Resour. 21(12), 1531–1539 (1987)

    Google Scholar 

  • El-Banbi, A.H.: Analysis of tight gas well performance. Ph.D. Thesis (1998)

  • Fetkovich, M.J.: Decline curve analysis using type curves. J. Pet. Technol. 32(6), 1065–1077 (1980)

  • Friend, D.G., Ely, J.F., Ingham, H.: Thermophysical Properties of Methane. J. Phys. Chem. Ref. Data 18(2), 583–638 (1989)

    Article  Google Scholar 

  • Gatens, M.J., Lee, W.J., Lane, H.S., Watson, A.T., Stanley, D.K.: Analysis of eastern devonian gas shales production data. J. Pet. Technol. 41(5), 519–525 (1989)

    Article  Google Scholar 

  • Geiger, S., Dentz, M., Neuweiler, I.: A novel multi-rate dual-porosity model for improved simulation of fractured and multi-porosity reservoirs. SPE J. 18(8), 670–684 (2013). doi:10.2118/148130-MS. https://www.onepetro.org/journal-paper/SPE-148130-PA

  • Haggerty, R., Gorelick, S.M.: Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour. Res. 31(10), 2383–2400 (1995)

    Article  Google Scholar 

  • Ilk, D., Perego, A., Rushing, J., Blasingame, T.: Exponential vs. hyperbolic decline in tight gas sands understanding the origin and implications for reserve estimates using Arps’ decline curves. In: SPE-116731, vol 116731 (2008)

  • Kuhlman, K.L., Malama, B., Heath, J.E.: Multiporosity flow in fractured low-permeability rocks. Water Resour. Res. 51(2), 848–860 (2015). doi:10.1002/2014WR016502

    Article  Google Scholar 

  • Lee, W.J., Slide, R.E.: Gas reserves estimation in resource plays. In: SPE-130102, vol. 130102 (2010)

  • Mattar, L., Gault, B., Morad, K., Clarkson, C.R., Freeman, C.M.: Production analysis and forecasting of shale gas reservoirs: case history-based approach. In: SPE, vol 119897 (2008)

  • Maxwell, S., Waltman, C., Warpinski, N., Mayerhofer, M.J., Boroumand, N.: Imaging seismic deformation induced by hydraulic fracture complexity. In: SPE-102801, vol. 102801 (2006)

  • Medeiros, F., Kurtoglu, B., Oil, M., Ozkan, E.: Analysis of production data from hydraulically fractured horizontal wells in shale reservoirs. SPE Reserv. Eval. Eng. 110848(June), 559–568 (2010)

    Article  Google Scholar 

  • Neuweiler, I., Erdal, D., Dentz, M.: A non-local Richards equation to model unsaturated flow in highly heterogeneous media under nonequilibrium pressure conditions. Vadose Zone J. 11, 0 (2012). doi:10.2136/vzj2011.0132

    Article  Google Scholar 

  • Neuzil, C.E.: How permeable are clays and shales? Water Resour. Res. 30(2), 145–150 (1994). doi:10.1029/93WR02930

    Article  Google Scholar 

  • Patzek, T.W., Male, F., Marder, M.: Gas production in the Barnett Shale obeys a simple scaling theory. Proc. Natl. Acad. Sci. USA 110(49), 19731–19736 (2013). doi:10.1073/pnas.1313380110

  • Peters, R.R., Klavetter, E.A.: A continuum model for water movement in an unsaturated fractured rock mass. Water Resour. Res. 24(3), 416–430 (1988)

    Article  Google Scholar 

  • Serra, K., Reynolds, A.C., Raghavan, R., Reynolds, A.C.: New pressure transient analysis methods for naturally fractured reservoirs(includes associated papers 12940 and 13014). J. Pet. Technol/ 35(12) (1983). doi:10.2118/10780-PA. http://www.onepetro.org/mslib/servlet/onepetropreview?id=00010780&soc=SPE

  • Tecklenburg, J., Neuweiler, I., Dentz, M., Carrera, J., Geiger, S., Abramowski, C., Silva, O.: A non-local two-phase flow model for immiscible displacement in highly heterogeneous porous media and its parametrization. Adv. Water Resour. 62, 475–487 (2013). doi:10.1016/j.advwatres.2013.05.012

    Article  Google Scholar 

  • Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3(3), 245–255 (1963)

    Article  Google Scholar 

  • Watson, A.T., Gatens III, J.M., Lee, W.J., Rahim, Z.: An analytical model for history matching naturally fractured reservoir production data. SPE Reserv. Eng. 5(3), 384–388 (1990)

  • Yu, W., Sepehrnoori, K.: Optimization of multiple hydraulically fractured horizontal wells in unconventional gas reservoirs. In: Proceedings of 2013 SPE Production and Operations Symposium, vol. 2013 (2013). doi:10.2118/164509-MS. https://www.onepetro.org/conference-paper/SPE-164509-MS

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this project from Imperial College, London, Joint Industry Project on Well Test Analysis in Complex Fluid-Well-Reservoir Systems, funded by BG Group, BHP-Billiton, Petro SA, Schlumberger and Eon-Rurhgas. They are grateful to BG Group and BHP-Billinton for providing the data used in this study. M. D. acknowledges the support of the European Research Council (ERC) through the project MHetScale (Contract No. 617511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Russian.

Appendices

Appendix 1: Derivation of the Memory Function

We assume that the lower cut-off scale \(\tau _1\) in (19) is much smaller than the upper cut-off \(\tau _2\) so that \(\tau _1/\tau _2 \ll 1\) and we approximate

$$\begin{aligned} P_{im}(\tau ) = \frac{1 - \beta }{\tau _2} \left( \frac{\tau }{\tau _2}\right) ^{-\beta } \Theta (\tau _2 - \tau ). \end{aligned}$$
(41)

Inserting (41) in (18), the memory function for a multi-continuum model with a constant retardation factor reads:

$$\begin{aligned} \varphi (t) = S_{im} \frac{1 - \beta }{\tau _2} \left( \frac{t}{\tau _2}\right) ^{-\beta } \int \limits _{t/\tau _2}^\infty \mathrm{d}z \, z^{\beta - 1} g'(z), \end{aligned}$$
(42)

where \(g'(z)\) is defined as: \( g(t,\tau ) = \frac{1}{\tau } \, g' \left( \frac{t}{\tau } \right) .\) The local memory function \(g(t,\tau )\) can be expressed as above from the definition of \( \tilde{g}(\omega ,\tau )\) given in (11), and we note that \(\tilde{g}(\omega ,\tau )\) is precisely a function of the product \( \omega \tau \). The function \(g'(z)\) behaves as \(z^{-1/2}\) for \(z < 1\) and decays exponentially fast for \(z \gg 1\). Thus, we approximate it here by the truncated power-law distribution: \( g'(z) =z^{-1/2} \exp (-z)/\Gamma (1/2). \) Inserting the previous approximation into (42) and executing the integral for the memory function, \(\varphi _{\kappa }(t)\) reads

$$\begin{aligned} \varphi (t) = S_{im}\frac{1 - \beta }{\tau _2 \Gamma (1/2)} \left( \frac{t}{\tau _2}\right) ^{-\beta } \Gamma (\beta - 1/2,t/\tau _2). \end{aligned}$$
(43)

This function behaves as a power law according to \(t^{-\beta }\) for \(t \ll \tau _2\) and is cut-off exponentially fast for \(t \gg \tau _2\). Thus, we approximate it by the truncated power law given in (20).

Appendix 2: General Solution of the Model

The general solution of Eq. (15) is given by a combination of modified Bessel functions of first kind \(\mathcal {I}_0 (\cdot )\) and second kind \(\mathcal {K}_0 (\cdot )\) (Carslaw and Jaeger 1947):

$$\begin{aligned} \langle \overline{p}_\mathrm{f}(r, \lambda )\rangle = N(\lambda ) \; \mathcal {K}_0[r \sqrt{\lambda \tau ^\prime (\lambda )} ] + M(\lambda ) \, \mathcal {I}_0 [r \sqrt{\lambda \tau ^\prime (\lambda )} ] + \frac{\overline{p}_\mathrm{f}(r,0)}{\lambda }, \end{aligned}$$
(44)

with \(\tau ^\prime (\lambda )\) defined in Eq. (25). The functions \(N(\lambda )\) and \(M(\lambda )\) do not depend on the radial coordinate \(r\) and are determined by imposing the given boundary condition in the general solution (44). Considering no radial flux at \(r=R\), Eq. (27), we obtain: \(N(\lambda )= M(\lambda ) \, \mathcal {I}_1 [r \sqrt{\lambda \tau ^\prime } ] / \mathcal {K}_1 [r \sqrt{\lambda \tau ^\prime } ]\), and by imposing Cauchy-type boundary condition at the well, Eq. (26), we obtain \(M(\lambda )\). By inserting \(N(\lambda )\) and \(M(\lambda )\) in Eq. (44) and rearranging the terms, we obtain Eq. (23).

Appendix 3: Asymptotic Expansion

In order to evaluate the asymptotic behaviour of the gas flux \(Q(t)\), we consider the expansion of the Bessel functions in (32) for small arguments \(x\),

$$\begin{aligned}&\mathcal {K}_0\left( x\right) = - \ln (x/2) + \cdots \end{aligned}$$
(45)
$$\begin{aligned}&\mathcal {I}_0\left( x \right) = 1 + \cdots \end{aligned}$$
(46)
$$\begin{aligned}&\mathcal {K}_1\left( x \right) = \frac{1}{x} + \frac{1}{2} \ln x \ldots \end{aligned}$$
(47)
$$\begin{aligned}&\mathcal {I}_1\left( x \right) = \frac{x}{2} \ldots , \end{aligned}$$
(48)

where the dots denote sub-leading contributions. Substituting these expansion into (32), we obtain:

$$\begin{aligned} Q^*(\lambda ) \simeq \frac{ \pi T_\mathrm{f} \left( {R'}^2 - {r'}^2_\mathrm{w} \right) \left[ \frac{p_\mathrm{f}(0)}{\lambda } -p^*_\mathrm{w}(\lambda )\right] }{1 + \frac{{R'}^2}{2} \ln \frac{R'}{r_\mathrm{w}'} + \frac{A}{2} \left( {R'}^2 - {r'}^2_\mathrm{w} \right) }. \end{aligned}$$
(49)

Setting the pressure in the extraction well constant, i.e. \(p_\mathrm{w}(t) = p_\mathrm{w} = \) constant, which implies \(p^*_\mathrm{w}(\lambda ) = \lambda ^{-1} p_\mathrm{w}\), and substituting \(r', R'\) and \(r_\mathrm{w}'\) by (24) and (29), we obtain Eq. (33).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russian, A., Gouze, P., Dentz, M. et al. Multi-continuum Approach to Modelling Shale Gas Extraction. Transp Porous Med 109, 109–130 (2015). https://doi.org/10.1007/s11242-015-0504-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0504-y

Keywords

Navigation