Skip to main content
Log in

Anti-correlated Porosity–Permeability Changes During the Dissolution of Carbonate Rocks: Experimental Evidences and Modeling

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The dissolution of carbonate rocks usually leads to both porosity \((\phi )\) and permeability \((k)\) increase. We present experimental evidences and physical-based models of positive and anti-correlated dynamics of \(k\) and \(\phi \) observed during dissolution experiments of carbonate rocks. We study the way the rate of change of \(\phi \) and \(k\) is controlled by the degree of undersaturation of the percolating solution for two different types of carbonate rocks. We document the occurrence of an anti-correlated \(k-\phi \) trend when the flowing fluid (deionized water) has a weak capacity of dissolution. A positive correlation is found when \(\hbox {CO}_{2}\) is added to the deionized water to increase the potential dissolution rate. Detailed analyses of the microstructures of the rock performed by X-ray microtomography reveal that low dissolution rate favors detachment of solid particles and their subsequent accumulation at the pore-throat inlet. Particles are detached from the rock matrix due to the differential dissolution rate of the indurated grains and the microporous cement. We then propose a simple phenomenological model to interpret the effect of the pore-throat clogging by the accumulation of partially dissolved carbonate particles. We conjecture that permeability is controlled by the decrease of the effective hydraulic radius and the increase of the tortuosity due to partial and localized obstruction of the pore network. Conversely, increasing the level of undersaturation of the flowing solution leads to an augmented potential of dissolving most of the transported particles before they reach the throats. In this case, both \(k\) and \(\phi \) increase and display power-law correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Appelo, C.A.J., Postma, D.: Geochemistry Groundwater and Pollution. A.A. Balkema Publishers, Rotterdam (1993)

    Google Scholar 

  • Athy, L.F.: Density, porosity, and compaction of sedimentary rocks. AAPG Bull. 14, 1–24 (1930)

    Google Scholar 

  • Cohen, C., Ding, D., Quintard, M., Bazin, B.: From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization. Chem. Eng. Sci. 63, 3088–3099 (2008)

    Article  Google Scholar 

  • Fan, Y., Durlofsky, L.J., Tchelepi, H.A.: A fully-coupled flow-reactive-transport formulation based on element conservation, with application to \(\text{ CO }_{2}\) storage simulations. Adv. Water Resour. 42, 47–61 (2012)

    Article  Google Scholar 

  • Garing, C.: Caractérisation géophysique et géochimique des interactions fluide-roche à l’interface eau douce-eau salée : cas des carbonates récifaux de Majorque. Ph.D. thesis, University of Montpellier 2, Montpellier, France (2011)

  • Garing, C., Luquot, L., Pezard, P.A., Gouze, P.: Electrical and flow properties of highly heterogeneous carbonate rocks. AAPG Bull. 98(1), 49–66 (2014)

    Article  Google Scholar 

  • Golfier, F., Zarcone, C., Bazin, V., Lenormand, R., Lasseux, D., Quintard, M.: Ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002)

    Article  Google Scholar 

  • Gouze, P., Luquot, L.: On the characterization of porosity–permeability relationships and reactive surface areas during heterogeneous dissolution induced by \(\text{ CO }_{2}\) injection in limestone reservoir. J. Contam. Hydrol. (2011). doi:10.1016/j.jconhyd.2010.07.004

  • Gouze, P., Noiriel, C., Bruderer, C., Loggia, D., Leprovost, R.: X-Ray tomography characterization of fracture surfaces during dissolution process. Geophys. Res. Lett. 30(5), 1267–1270 (2003)

    Article  Google Scholar 

  • Gouze, P., Melean, Y., Le Borgne, T., Dentz, M., Carrera, J.: Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion. Water Resour. Res. (2008). doi:10.1029/2007WR006690

    Google Scholar 

  • Hao, Y., Smith, M.M., Sholokhova, Y., Carroll, S.A.: \(\text{ CO }_{2}\)-induced dissolution of low permeability carbonates, part II: numerical modeling of experiments. Adv. Water Resour. 62, 388–408 (2013)

    Article  Google Scholar 

  • Hebert, V.: Analyses multi-echelles de la structure d’un reservoir carbonate littoral: Exemple de la plateforme de Llucmajor (Majorque, Espagne). Ph.D. thesis, University of Montpellier 2, Montpellier, France (2011)

  • Hebert, V., Garing, C., Luquot, L., Gouze, P.: Multi-scale X-ray tomography analysis of carbonate porosity. In: Agar, S.M., Geiger, S. (eds.) Geological Society. Special Publications, London (2014). doi:10.1144/SP406.12

    Google Scholar 

  • Kalia, N., Balakotaiah, V.: Modeling and analysis of wormhole formation in reactive dissolution of carbonate rocks. Chem. Eng. Sci. 62(2007), 919–928 (2007)

  • Le Guen, Y., Hellmann, R., Collombet, M., Gratier, J.-P., Renard, F., Brosse, E.: Enhanced deformation of limestone and sandstone in the presence of high \(\text{ P }_{\rm CO_2}\) fluids. J. Geophys. Res. B: Solid Earth (2007). doi:10.1029/2006JB004637

  • Luquot, L., Gouze, P.: Experimental determination of porosity and permeability changes induced by massive injection of \(\text{ CO }_{2}\) into carbonate reservoirs. Chem. Geol. (2009). doi:10.1016/j.chemgeo.2009.03.028

  • Luquot, L., Rodriguez, O., Gouze, P.: Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes. Transp. Porous Media (2014). doi:10.1007/s11242-013-0257-4

  • Luhmann, A.J., Kong, X.-Z., Tutolo, B.M., Garapati, N., Bagley, B.C., Saar, M.O., Seyfried Jr, W.E.: Experimental dissolution of dolomite by \(\text{ CO }_{2}\)-charged brine at \(100\,^{\circ }\text{ C }\) and 150 bar: evolution of porosity, permeability, and reactive surface area. Chem. Geol. 380, 145–160 (2014)

    Article  Google Scholar 

  • Mangane, P.O., Gouze, P., Luquot, L.: Permeability impairment of a limestone reservoir triggered by heterogeneous dissolution and particles migration during \(\text{ CO }_{2}\)-rich injection. Geophys. Res. Lett. 40(17), 4614–4619 (2013)

    Article  Google Scholar 

  • Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time, Computational imaging and vision. Mathematical Morphology and Its Application to Image and Signal Processing 18(8), 331–340 (2000)

  • Moore, C.H.: Carbonate reservoirs, porosity evolution and diagenesis in a sequence-stratigraphic frame-work. In: Developments in Sedimentology, vol. 55. pp. 1–444 (2001)

  • Noiriel, C., Bernard, D., Gouze, P., Thibault, X.: Hydraulic properties and microgeometry evolution accompanying limestone dissolution by acidic water. Oil Gas Sci. Technol. 60, 177–192 (2005)

    Article  Google Scholar 

  • Noiriel, C., Luquot, L., Madé, B., Raimbault, L., Gouze, P., Van Der Lee, J.: Changes in reactive surface area during dissolution process: an experimental and modelling study. Chem. Geol. (2009). doi:10.1016/j.chemgeo.2009.01.032

  • Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Report pp. 99–4259 (1999)

  • Pokrovsky, O.S., Golubev, S.V., Schott, J., Castillo, A.: Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to \(150\,^{\circ }\text{ C }\) and 1 to 55 atm \(\text{ P }_{\rm CO_2}\): new constraints on \(\text{ CO }_2\)sequestration in sedimentary basins. Chem. Geol. 265, 20–32 (2009)

    Article  Google Scholar 

  • Qajar, J., Francois, N., Arns, C.H.: Microtomographic characterization of dissolution-induced local porosity changes including fines migration in carbonate rock. SPE J. 18(3), 545–562 (2013)

    Article  Google Scholar 

  • Rutqvist, J., Stephansson, O.: The role of hydromechanical coupling in fractured rock engineering. Hydrol. J. 11, 7–40 (2003)

    Google Scholar 

  • Saaltink, M., Vilarrasa, V., de Gaspari, F., Silva, O., Carrera, J., Rötting, T.S.: A method for incorporating equilibrium chemicals reactions into multiphase flow models for \(\text{ CO }_{2}\) storage. Adv. Water Resour. 62, 431–441 (2013)

    Article  Google Scholar 

  • Sahimi, M.: Applications of Percolation Theory. CRC Press, Taylor & Francis, London (1994)

    Google Scholar 

  • Schneider, F., Potdevin, J.L., Wolf, S., Faille, I.: Mechanical and chemical compaction model for sedimentary basin simulators. Tectonophysics 263, 307–313 (1996)

    Article  Google Scholar 

  • Siena, M., Guadagnini, A., Riva, M., Bijeljic, B., Pereira Nunes, J.P., Blunt, M.J.: Statistical scaling of pore-scale Lagrangian velocities in natural porous media. Phys. Rev. E. 90, 023013 (2014)

  • Smith, M.M., Sholokhova, Y., Hao, Y., Carroll, S.A.: \(\text{ CO }_{2}\)-induced dissolution of low permeability carbonates, part I: characterization and experiments. Adv. Water Resour. 62, 370–387 (2013)

    Article  Google Scholar 

  • Tutolo, B.M., Luhmann, A.J., Kong, X.-Z., Saar, M.O., Seyfried Jr, W.E.: Experimental observation of permeability changes in dolomite at \(\text{ CO }_{2}\) sequestration conditions. Environ. Sci. Technol. (2014). doi:10.1021/es4036946

  • Wang, X., Alvarado, V., Swoboda-Colberg, N., Kaszuba, J.P.: Reactivity of dolomite in water-saturated supercritical carbon dioxide: significance for carbon capture and storage and for enhanced oil and gas recovery. Energy Convers. Manag. 65, 564–573 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr Elodie Boller (European Synchrotron Radiation Facility, Grenoble, France) for her precious help in the data acquisition and Dr Linda Luquot for the many constructive discussions concerning the experimental protocol setup. This study was supported by the EU-funded project PANACEA (EU-7thFP—ENERGY 282900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Garing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garing, C., Gouze, P., Kassab, M. et al. Anti-correlated Porosity–Permeability Changes During the Dissolution of Carbonate Rocks: Experimental Evidences and Modeling. Transp Porous Med 107, 595–621 (2015). https://doi.org/10.1007/s11242-015-0456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0456-2

Keywords

Navigation