Skip to main content
Log in

In vitro co-culture of Solanum tuberosum hairy roots with Meloidogyne chitwoodi: structure, growth and production of volatiles

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Meloidogyne spp., commonly known as root-knot nematodes (RKNs), are economically important plant sedentary endoparasites that cause galls on susceptible hosts. The Columbia root-knot nematode (CRKN), M. chitwoodi, is a quarantine A2 type pest by the European and Mediterranean Plant Protection Organization since 1998. This nematode has been found associated with economically important crops such as potato and tomato, causing severe damage and making the agricultural products unacceptable for the fresh market and food processing. In vitro co-culture of host and parasite offers an advantageous experimental system for studying plant-RKN interactions. The structure, growth and production of volatiles of Solanum tuberosum hairy roots (HR) and of S. tuberosum HR/CRKN co-cultures were compared. HR were induced by inoculation of aseptic potato tuber segments with Rhizobium rhizogenes. Co-cultures were initiated by inoculating HR with sterilized CRKN eggs. Infection with CRKN induced the RKN symptomatology in the HR and several nematode life stages were observed by light and scanning electron microscopy. Potato HR and HR/CRKN co-cultures exhibited similar growth patterns, evaluated by measuring fresh and dry weight and by the dissimilation method. Volatiles, isolated by distillation–extraction and analyzed by gas chromatography (GC) and gas chromatography coupled to mass spectrometry, revealed that palmitic acid (37–52 %), n–pentadecanal (10–16 %) and linoleic acid (2–16 %) were the main constitutive components of S. tuberosum HR, and of the HR/CRKN co-cultures (24–44, 8–22 and 4–18 %, respectively). S. tuberosum HR/CRKN co-cultures can be considered a suitable biotechnological tool to study RKN infection mechanism by mimicking what occurs under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

µ:

Specific growth rate

CRKN:

Columbia root-knot nematode (Meloidogyne chitwoodi)

DAI:

Days after inoculation

dt:

Doubling time

DW:

Dry weight

EPPO:

European and Mediterranean Plant Protection Organization

FW:

Fresh weight

GC:

Gas chromatography

GC–MS:

Gas chromatography coupled to Mass Spectrometry

HgCl2 :

Mercuric chloride

HR:

Hairy roots

J2:

Nematode second-stage juveniles

LM:

Light microscopy

NaOCl:

Sodium hypochlorite

OsO4 :

Osmium tetroxide

PAS:

Periodic acid–Schiff’s reagent

RI:

Retention index

RKN:

Root-knot nematode

SEM:

Scanning electron microscopy

SH:

Schenk and Hildebrandt medium

t:

Trace

References

  • Andrés MF, Gonzáles-Coloma A, Sanz J, Burillo J, Sainz P (2012) Nematicidal activity of essential oils: a review. Phytochem Rev 11:371–390. doi:10.1007/s11101-012-9263-3

    Article  Google Scholar 

  • Ascensão L, Francisco A, Cotrim H, Pais MS (2005) Comparative structure of the labellum in Ophrys fusca and O. lutea (Orchidaceae). Am J Bot 92:1059–1067. doi:10.3732/ajb.92.7.1059

    Article  PubMed  Google Scholar 

  • Berg RH, Taylor CG (2009) Cell biology of plant nematode parasitism. Plant cell monographs, vol 15. Springer, Berlin

  • Bonga JM, Durzan DJ (1982) Tissue culture in forestry. Forestry sciences, vol 5. Martinus Nijhoff/Dr W. Junk Publishers, The Hague

  • Bull CT, De Boer SH, Denny TP, Firrao G, Fischer-Le Saux M, Saddler GS, Scortichini M, Stead DE, Takikawa Y (2010) Comprehensive list of names of plant pathogenic bacteria, 1980–2007. J Plant Pathol 92:551–592

    Google Scholar 

  • Chitwood DJ (2002) Phytochemical based strategies for nematode control. Annu Rev Phytopathol 40:221–249. doi:10.1146/annurev.phyto.40.032602.130045

    Article  CAS  PubMed  Google Scholar 

  • Chitwood DJ (2003) Nematicides. In: Plimmer JR (ed) Encyclopedia of agrochemicals, vol 3. Wiley, New York, pp 1104–1115

    Google Scholar 

  • Conceição IL, Cunha MJM, Feio G, Correia M, Santos MCV, Abrantes IMO, Santos MSNA (2009) Root-knot nematodes, Meloidogyne spp., on potato in Portugal. Nematology 11:311–313

    Article  Google Scholar 

  • Costa MM (2005) Raízes transgénicas de Levisticum officinale como sistema modelo para o estudo da produção de voláteis. M.Sc thesis. Faculdade de Ciências da Universidade de Lisboa

  • Desjardins AE, McCormick SP, Plaisted RL, Brodie BB (1997) Association between solavetivone production and resistance to Globodera rostochiensis in potato. J Agric Food Chem 45:2322–2326. doi:10.1021/jf960830p

    Article  CAS  Google Scholar 

  • Dhakulkar A, Ganapathi TR, Bhargava S, Bapat VA (2005) Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots. Plant Sci 169:812–818. doi:10.1016/j.plantsci.2005.05.014

    Article  CAS  Google Scholar 

  • Edens RM, Anand SC, Bolla RI (1995) Enzymes of the phenylpropanoid pathway in soybean infected with Meloidogyne incognita or Heterodera glycines. J Nematol 27:292–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • EPPO (2012) Data sheets on quarantine pests: Meloidogyne chitwoodi. http://www.eppo.int/QUARANTINE/nematodes/Meloidogyne_chitwoodi/MELGCH_ds.pdf. Accessed 15 March 2013

  • Faria JMS, Nunes IS, Figueiredo AC, Pedro LG, Trindade H, Barroso JG (2009) Biotransformation of menthol and geraniol by hairy root cultures of Anethum graveolens: effect on growth and volatile components. Biotechnol Lett 31:897–903. doi:10.1007/s10529-009-9934-3

    Article  CAS  PubMed  Google Scholar 

  • Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142

    Article  Google Scholar 

  • Ferris H, Carlson HL, Viglierchio DR, Westerdahl BB, Wu FW, Anderson CE, Juurma A, Kirby DW (1993) Host status of selected crops to Meloidogyne chitwoodi. J Nematol 25:849–857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Figueiredo AC, Pais MS (1994) Ultrastructural aspects of the glandular cells from the secretor trichomes and from cell suspension cultures of Achillea millefolium L. ssp. millefolium. Ann Bot-London 74:179–190

    Article  Google Scholar 

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2006) Potentialities of hairy root cultures for in vitro essential oil production. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Global Science Books Ltd., Middlesex. pp 478–486

  • Geraldes DMA (2010) Biotransformação de monoterpenos por raízes transgénicas de Anethum graveolens. M.Sc. Thesis. Faculdade de Ciências da Universidade de Lisboa

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22. doi:10.1016/S0734-9750(99)00016-6

    Article  CAS  PubMed  Google Scholar 

  • Golden AM, O’Bannon JH, Santo GS, Finley AM (1980) Description and SEM observations of Meloidogyne chitwoodi n. sp. (Meloidogynidae), a root-knot nematode on potato in the Pacific Northwest. J Nematol 12:319–327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffin GD (1985) Host-Parasite relationship of Meloidogyne chitwoodi on potato. J Nematol 17:395–399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen E, Harper G, McPherson MJ (1996) Differential expression patterns of the wound-inducible transgene wun1-uidA in potato roots following infection with either cyst or root knot nematodes. Physiol Mol Plant P 48:161–170. 10.1006/pmpp.1996.0014

  • Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028

    Google Scholar 

  • Khoshkhoo N, Hedin PA, McCarty JC (1994) Terpenoid aldehydes in root-knot nematode susceptible and resistant cotton plants. J Agric Food Chem 42:204–208. doi:10.1021/jf00037a037

    Article  CAS  Google Scholar 

  • Komaraiah P, Reddy GV, Reddy PS, Raghavendra AS, Ramakrishna SV, Reddanna P (2003) Enhanced production of antimicrobial sesquiterpenes and lipoxygenase metabolites in elicitor-treated hairy root cultures of Solanum tuberosum. Biotechnol Lett 25:593–597. doi:10.1023/A:1023038804556

    Article  CAS  PubMed  Google Scholar 

  • Kondo O, Honda H, Taya M, Kobayashi T (1989) Comparison of growth properties of carrot hairy root in various bioreactors. Appl Microbiol Biotechnol 32:291–294. doi:10.1007/BF00184976

    Article  CAS  Google Scholar 

  • Kumar A, Forrest JMS (1990) Reproduction of Globodera rostochiensis on transformed roots of Solanum tuberosum cv. Desiree. J Nematol 22:395–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Todd TC, Lee J, Trick HN (2011) Biotechnological application of functional genomics towards plant-parasitic nematode control. Plant Biotechnol J 9:936–944. doi:10.1111/j.1467-7652.2011.00601.x

    Article  CAS  PubMed  Google Scholar 

  • Likens ST, Nickerson GB (1964) Detection of certain Hop oil constituents in brewing products. Am Soc Brew Chem Proc 5:13–19

    Google Scholar 

  • Maheshwari R (1991) Applications of plant tissue and cell culture in the study of physiology of parasitism. Proc Indian Acad Plant Sci 69:152–172

    Google Scholar 

  • Maldonado-Mendoza IE, Ayora-Talavera T, Loyola-Vargas VM (1993) Establishment of hairy root cultures of Datura stramonium. Plant Cell Tiss Org 33:321–329. doi:10.1007/BF02319018

    Article  CAS  Google Scholar 

  • McClure MA, Kruk TH, Misaghi I (1973) A method for obtaining quantities of clean Meloidogyne eggs. J Nematol 5:230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mehrara E, Forssell-Aronsson E, Ahlman H, Bernhardt P (2007) Specific growth rate versus doubling time for quantitative characterization of tumor growth rate. Cancer Res 67:3970–3975. doi:10.1158/0008-5472.CAN-06-3822

    Article  CAS  PubMed  Google Scholar 

  • Mitkowski NA, Abawi GS (2002) Monoxenic maintenance and reproduction of root-knot nematode (Meloidogyne hapla) on multiple-species in vitro root culture systems. Plant Cell Rep 21:14–23. doi:10.1007/s00299-002-0468-6

    Article  CAS  Google Scholar 

  • Mojtahedi H, Santo GS, Wilson JH (1988) Host tests to differentiate Meloidogyne chitwoodi races 1 and 2 and M. hapla. J Nematol 20:468–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy A, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250. doi:10.1111/j.1365-313X.2005.02364.x

    Article  CAS  PubMed  Google Scholar 

  • Nunes IS, Faria JMS, Figueiredo AC, Pedro LG, Trindade H, Barroso JG (2009) Menthol and geraniol biotransformation and glycosylation capacity of Levisticum officinale hairy roots. Planta Med 75:387–391. doi:10.1055/s-0028-1112217

    Article  CAS  PubMed  Google Scholar 

  • O’Bannon JH, Santo GS, Nyczepir AP (1982) Host range of the Columbian root-knot nematode. Plant Dis 66:1045–1048

    Article  Google Scholar 

  • OEPP/EPPO (2009) Meloidogyne chitwoodi and Meloidogyne fallax. EPPO Bull 39:5–17

    Article  Google Scholar 

  • Oksman-Caldentey KM, Hiltunen R (1996) Transgenic crops for improved pharmaceutical products. Field Crop Res 45:57–69. doi:10.1016/0378-4290(95)00059-3

    Article  Google Scholar 

  • Pak HK, Sim JS, Rhee Y, Ko HR, Ha SH, Yoon MS, Kang CH, Lee S, Kim YH, Hahn BS (2009) Hairy root induction in Oriental melon (Cucumis melo) by Agrobacterium rhizogenes and reproduction of the root-knot nematode (Meloidogyne incognita). Plant Cell Tiss Organ Cult 98:219–228. doi:10.1007/s11240-009-9556-4

    Article  CAS  Google Scholar 

  • Perry RN, Moens M, Starr JL (2009) Root-knot nematodes. CAB International, UK

    Book  Google Scholar 

  • Santo GS, O’Bannon JH (1981) Effect of soil temperature on the pathogenicity and reproduction of Meloidogyne chitwoodi and M. hapla on Russet Burbank potato. J Nematol 13:483–486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santo GS, Finley AM, Golden AM (1980) Occurrence and host range of a new root-knot nematode (Meloidogyne chitwoodi) in the Pacific Northwest. Plant Dis 64:951–952. doi:10.1094/PD-64-951

    Article  Google Scholar 

  • Santos PM (1997) Raízes transformadas de Pimpinella anisum: morfologia, crescimento e caracterização da produção de voláteis. M.Sc. Thesis. Faculdade de Ciências da Universidade de Lisboa

  • Santos PM, Figueiredo AC, Oliveira MM, Barroso JG, Pedro LG, Deans SG, Younus AKM, Scheffer JC (1998) Essential oils from hairy root cultures and from fruits and roots of Pimpinela anisum. Phytochemistry 48:455–460. doi:10.1016/S0031-9422(98)00022-3

    Article  CAS  Google Scholar 

  • Schenk UR, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204. doi:10.1139/b72-026

    Article  CAS  Google Scholar 

  • Schripsema J, Meijer AH, Iren F, ten Hoopen HJG, Verpoorte R (1990) Dissimilation curves as a simple method for the characterization of growth of plant cell suspension cultures. Plant Cell Tiss Org 22:55–64. doi:10.1007/BF00043699

    Google Scholar 

  • Valancin A, Srinivasan B, Rivoal J, Jolicoeur M (2013) Analyzing the effect of decreasing cytosolic triosephosphate isomerase on Solanum tuberosum hairy root cells using a kinetic–metabolic model. Biotechnol Bioeng 110:924–935. doi:10.1002/bit.24747

    Article  CAS  PubMed  Google Scholar 

  • Veech JA (1978) An apparent relationship between methoxy-substituted terpenoid aldehydes and the resistance of cotton to Meloidogyne incognita. Nematologica 24:81–87. doi:10.1163/187529278X00092

    Article  CAS  Google Scholar 

  • Verdejo S, Jafee BA, Mankau R (1988) Reproduction of Meloidogyne javanica on plant roots genetically transformed by Agrobacterium rhizogenes. J Nematol 20:599–604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vieira dos Santos MC, Curtis RHC, Abrantes IMO (2013) Effect of plant elicitors on the reproduction of the root-knot nematode Meloidogyne chitwoodi on susceptible hosts. Eur J Plant Pathol 136:193–202. doi:10.1007/s10658-012-0155-6

    Article  CAS  Google Scholar 

  • Wiśniewska A, Dabrowska-Bronk J, Szafranski K, Fudali S, Swiecicka M, Czarny M, Wilkowska A, Morgiewicz K, Matusiak J, Sobczak M, Filipecki M (2013) Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis. Transgenic Res 22:557–569. doi:10.1007/s11248-012-9665-4

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Aiden C. Parte (LPSN–bacterio.net), Prof. Dr Leonor Faleiro (Universidade do Algarve, Faculdade de Ciências e Tecnologia, CBV, IBB) and Dr Daniela Pinto (Universidade de Lisboa, Faculdade de Ciências, Laboratório de Biotecnologia e Microbiologia, BioFIG) for providing information on R. rhizogenes recent taxonomy; and Dr Rian Stekelenburg from HZPC Holland B.V. for providing potato cultivar nomenclature. Jorge Faria is grateful to the Fundação para a Ciência e a Tecnologia (FCT) for the PhD grant SFRH/BD/43738/2008. This study was partially funded by FCT, under Pest-OE/EQB/LA0023/2011 and research contract PTDC/AGR-CFL/117026/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cristina Figueiredo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, J.M.S., Sena, I., Maleita, C.M. et al. In vitro co-culture of Solanum tuberosum hairy roots with Meloidogyne chitwoodi: structure, growth and production of volatiles. Plant Cell Tiss Organ Cult 118, 519–530 (2014). https://doi.org/10.1007/s11240-014-0504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0504-6

Keywords

Navigation