Skip to main content
Log in

Effects of culture medium and auxins on growth of adventitious root cultures of Cuphea aequipetala Cav. and their ability to produce antioxidant compounds

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cuphea aequipetala Cav. (Lythraceae), a species highly valued for its medicinal properties, is threatened in the wild. To provide an alternative source of material for production of bioactive compounds, we established adventitious root cultures of C. aequipetala and determined their phenolic compounds contents and antioxidant activity. Cultures were initiated from root tips of in vitro C. aequipetala plantlets and were grown in B5 or SH culture medium containing either indole butyric acid (IBA) or α-naphthalene acetic acid at 0, 5 or 10 µM. The maximum root biomass (1.6 g/L dry mass (DM) per L medium) was recorded after 14 days of growth in B5 + 5 µM IBA. Roots in B5 medium remained green, whereas they tended to oxidize in SH medium. The highest contents of total phenolic compounds (9.1 ± 0.1 µg gallic acid equivalents/g DM) and flavonoids (37.5 ± 0.7 µg quercetin equivalents/g DM) were in roots grown in B5 + 5 µM IBA after 14 days of growth. Root cultures accumulated mainly flavan-3-ols, whereas roots or leaves from whole plants accumulated mainly flavonols. We analyzed the antioxidant properties of root extracts using in vitro assays. Roots grown in B5 medium showed stronger free-radical scavenging activity than that of roots grown in SH medium. Our results show that adventitious root cultures of C. aequipetala are a promising system for research on antioxidant compounds biosynthesis and for scaled-up production of useful biological materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

DM:

Dry mass

F&C:

Folin and Ciocalteu’s phenol reagent

GAE:

Gallic acid equivalents

IBA:

Indole-3-butyric acid

NAA:

α-Naphthalene acetic acid

QE:

Quercetin equivalents

TPC:

Total phenolic compounds

Trolox:

6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

References

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Rodriguez S, Echeveste-Ramirez NL, López-Villafranco ME, Aquilar-Contreras A, Vega-Avila E, Reyes-Chilpa R (2012) Etnobotánica, micrografía analítica de hojas y tallos y fitoquimica de Cuphea aequipetala Cav. (Lythraceae): una contribución a la Farmacopea Herbolaria de los Estados Unidos Mexicanos (FHEUM). Bol Latinoam Caribe Plant Med Aromat 11:316–330

    CAS  Google Scholar 

  • Alonso-Castro AJ, Villarreal ML, Salazar-Olivo LA, Gomez-Sanchez M, Dominguez F, Garcia-Carranca A (2011) Mexican medicinal plants used for cancer treatment: pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol 133:945–972

    Article  CAS  PubMed  Google Scholar 

  • Amoo SO, Aremu AO, Staden J (2013) Shoot proliferation and rooting treatments influence secondary metabolite production and antioxidant activity in tissue culture-derived Aloe arborescens grown ex vitro. Plant Growth Regul 70:115–122

    Google Scholar 

  • Baque MA, Moh S-H, Lee E-J, Zhong J-J, Paek K-Y (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 30:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Biblioteca Digital de la Medicina Tradicional Mexicana (2013) http://www.medicinatradicionalmexicana.unam.mx/index.php. México

  • Cardenas-Sandoval BA, López-Laredo AR, Martínez-Bonfil BP, Bermúdez-Torres K, Trejo-Tapia G (2012) Advances in the phytochemistry of Cuphea aequipetala, C. aequipetala var. hispida and C. lanceolata: extraction and quantification of phenolic compounds and antioxidant activity. Rev Mex Ing Quim 11:401–413

    CAS  Google Scholar 

  • Cui X-H, Chakrabarty D, Lee E-J, Paek K-Y (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716

    Article  CAS  PubMed  Google Scholar 

  • de Rijke E, Out P, Niessen WM, Ariese F, Gooijer C, Brinkman UA (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112:31–63

    Article  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:150–158

    Article  Google Scholar 

  • Gangopadhyay M, Dewanjee S, Chakraborty D, Bhattacharya S (2011) Role of exogenous phytohormones on growth and plumbagin accumulation in Plumbago indica hairy roots and conservation of elite root clones via synthetic seeds. Ind Crops Prod 33:445–450

    Article  CAS  Google Scholar 

  • Graham SA (1991) Lythraceae. Flora de Veracruz 66:1–41

    Google Scholar 

  • Hao J-P, Guan Q (2011) Synthesis of saikosaponins in adventitious roots of Bupleurum chinense by semi-continuous culture. Plant Cell Tiss Organ Cult 108:159–165

    Article  Google Scholar 

  • Kim Y-S, Hahn E-J, Yeung EC, Paek K-Y (2003) Lateral root development and saponin accumulation as affected by IBA or NAA in adventitious root cultures of Panax ginseng C.A. Meyer. In Vitro Cell Dev Biol Plant 39:245–249

    Article  CAS  Google Scholar 

  • Krepsky PB, Farias MR, Côrtes SF, Braga FC (2010) Quercetin-3-sulfate: a chemical marker for Cuphea carthagenensis. Biochem Syst Ecol 38:125–127

    Article  CAS  Google Scholar 

  • Ljung K, Hull A, Kowalczyk M, Marchant A, Celenza J, Cohen J, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332

    Article  Google Scholar 

  • López-Laredo A, Ramírez-Flores F, Sepúlveda-Jiménez G, Trejo-Tapia G (2009) Comparison of metabolite levels in callus of Tecoma stans (L.) Juss. ex Kunth. cultured in photoperiod and darkness. In Vitro Cell Dev Biol Plant 45:550–558

    Article  Google Scholar 

  • Marquez A, Serratosa MP, Merida J (2014) Antioxidant activity in relation to the phenolic profile during the winemaking of sweet wines Vitis vinifera cv. Cabernet Sauvignon. Int Food Sci Technol doi:10.1111/ijfs.12521

  • Martínez M (1994) Catálogo de nombres vulgares y científicos de Plantas Mexicanas. Fondo de Cultura Económico, México

    Google Scholar 

  • Martínez-Bonfil B, Pineda-Montero M, López-Laredo AR, Salcedo Morales G, Evangelista-Lozano S, Trejo-Tapia G (2013) A propagation procedure for Cuphea aequipetala Cav. (Lythraceae) and antioxidant properties of wild and greenhouse-grown plants. Bol Latinoam Caribe Plant Med Aromat 12:1–14

    Google Scholar 

  • Maurmann N, Rech S, Fett-Neto A (2008) Improved nutrient medium for biomass and valepotriate production in extended period stock cultures of Valeriana glechomifolia. In Vitro Cell Dev Biol Plant 44:209–215

    Article  CAS  Google Scholar 

  • Palacios-Espinosa JF, Arroyo-García O, García-Valencia G, Linares E, Bye R, Romero I (2014) Evidence of the anti-Helicobacter pylori, gastroprotective and anti-inflammatory activities of Cuphea aequipetala infusion. J Ethnopharmacol 151(2):990–998

    Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of Vitamin E. Anal Biochem 269:337–340

    Article  CAS  PubMed  Google Scholar 

  • Reis R, Borges A, Chierrito T, de Souto E, de Souza L, Iacomini M, de Oliveira A, Gonçalves R (2011) Establishment of adventitious root culture of Stevia rebaudiana Bertoni in a roller bottle system. Plant Cell Tiss Organ Cult 106:329–335

    Google Scholar 

  • Rita I, Floh EIS (1995) Tissue culture and micropropagation of Cuphea ericoides, a potential source of medium-chain fatty acids. Plant Cell Tiss Organ Cult 40:187–189

    Article  CAS  Google Scholar 

  • Rosas G, Bermúdez K, Trejo G (2009) Conocimiento y uso científico de las hierbas del cáncer. Conversus 78:26–30

    Google Scholar 

  • Sakunphueak A, Panichayupakaranant P (2010) Increased production of naphthoquinones in Impatiens balsamina root cultures by elicitation with methyl jasmonate. Bioresour Technol 101:8777–8783

    Article  CAS  PubMed  Google Scholar 

  • Santos DYAC, Salatino MLF, Salatino A (1995) Flavonoids of species of Cuphea (Lythraceae) from Brazil. Biochem Syst Ecol 23:99–103

    Article  CAS  Google Scholar 

  • Schenk R, Hilderbrandt A (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Sivanandhan G, Kapil Dev G, Jeyaraj M, Rajesh M, Arjunan A, Muthuselvam M, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tiss Organ Cult 114:121–129

    Article  CAS  Google Scholar 

  • Tabart J, Kevers C, Pincemail J, Defraigne J-O, Dommes J (2009) Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem 113:1226–1233

    Article  CAS  Google Scholar 

  • Vega E (2005) Estudio de Cuphea aequipetala Cav. sobre la proliferación in vitro de células humanas transformadas. Dissertation, Universidad Autónoma Metropolitana

  • Vega-Avila E, Aguilar RT, Estrada MJ, Ortega MLV, Ramos RR (2004) Cytotoxic Activity of Cuphea aequipetala. Proc West Pharmacol Soc 47:129–133

    Google Scholar 

  • Waizel-Bucay J, Martinez-Porcayo G, Villarreal-Ortega ML, Alonso-Cortes D, Pliego-Castañeda A (2003) Estudio preliminar etnobotanico, fitoquimico de la actividad citotóxica y antimicrobiana de Cuphea aequipetala Cav. (Lythraceae). Polibotánica 14:99–108

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Secretaría de Investigación y Posgrado del IPN-México (SIP-IPN Grant 20131756) and by Consejo Nacional de Ciencia y Tecnología (CONACyT-México) (Grant 100202). The funding bodies were not involved in the preparation or decision to submit the present paper for publication. B.P.M.B., A.R.L.L., G.T.T. and J.L.T.E. thank SIBE and EDI (IPN).

Conflicts of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Trejo-Espino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Bonfil, B.P., Cruz-Hernández, A., López-Laredo, A.R. et al. Effects of culture medium and auxins on growth of adventitious root cultures of Cuphea aequipetala Cav. and their ability to produce antioxidant compounds. Plant Cell Tiss Organ Cult 118, 401–408 (2014). https://doi.org/10.1007/s11240-014-0492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0492-6

Keywords

Navigation