Skip to main content

Advertisement

Log in

Somatic embryogenesis and synthetic seed production in Rhinacanthus nasutus (L.) Kurz.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Young healthy cotyledon and leaf explants of Rhinacanthus nasutus (L.) Kurz. were incubated on Murashige and Skoog (MS) medium supplemented with 1.0–5.0 mg/l 2, 4-dichlorophenoxyacetic acid (2,4-D) either alone or in combination with 0.3–1.5 mg/l indole-3-butyric acid (IBA). The optimum callus induction (100 %) was observed from cotyledon explants on MS medium supplemented with 4 mg/l 2, 4-D and 0.5 mg/l IBA. The friable, embryogenic callus when subcultured on half strength MS medium supplemented with IBA (3.0–5.0 mg/l) produced several somatic embryos at various stages of development (globular, heart, torpedo) after 45 days of culture. The highest frequency of callus embryogenesis was observed on ½MS medium supplemented with 4.0 mg/l IBA. Moreover, 47 % of incubated callus responded with a mean number of 16.3 somatic embryos per gram callus. For germination, somatic embryos at the torpedo stage were isolated and subcultured on ½MS medium supplemented with 0.5 mg/l each of 6-benzyladenine and indole-3-acetic acid. After 45 days of culture, plantlets developed with mean lengths of 3.8 cm. Somatic embryos at the torpedo stage were collected and suspended in a matrix of MS medium containing sodium alginate (3 % W/V), dropped into 100 mM calcium chloride (CaCl2·2H2O) solution for the production of synthetic seeds. Optimum growth ability of synthetic seed was obtained on MS medium supplemented with 0.2 mg/l gibberellic acid (GA3). Well developed healthy plantlets derived from somatic embryos and synthetic seeds were hardened and successfully transplanted to soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2, 4-D:

2, 4-dichlorophenoxyacetic acid

BA:

6-Benzyladenine

GA3 :

Gibberellic acid

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

Kn:

Kinetin

MS:

Murashige and Skoog medium

NAA:

1-Naphthalene acetic acid

References

  • Anand Y, Bansal YB (2002) Synthetic seed: a noval approach of in vitro plantlet formation in Vasaka (Adhatoda vasica Nees). Plant Mol 19:159–162

    CAS  Google Scholar 

  • Atsusi K, Yoshioki H (1993) Isolation and identification of an antifungal naphthopyran derivative from Rhinacanthus nasutus. J Nat Prod 56:292–294

    Article  Google Scholar 

  • Aydin Y, Talas-Oğraş T, Altınkut A, Ismailoğlu I, Arıcan E, Gözükırmızi N (2010) Cytohistological studies during cotton somatic embryogenesis with brassinosteroid application. IUFS J Biol 69:33–39

    Google Scholar 

  • Aziz S, Akeng G, Kandasamy KI (2000) Induction of somatic embryos from cotyledonary tissue of Tongkat Ali (Eurycoma longifolia). J Trop Med Plant 1:53–56

    Google Scholar 

  • Barnash N (2003) The vasodilator effects of nifedipine and the plant extract, Rhinacanthus nasutus, in hypertensive rats. J Biol Res 4:17–23

    Google Scholar 

  • Baskaran P, Van Staden J (2012) Somatic embryogenesis of Merwilla plumbea (Lindl.) Speta. Plant Cell Tissue Organ Cult 109:517–524

    Article  CAS  Google Scholar 

  • Bekheet SA (2006) A synthetic seed method through encapsulation of in vitro proliferated bulblets of garlic (Allium sativum L.). Arab J Biotechol 9:415–426

    Google Scholar 

  • Cardosa JC, Martinelli AP, Latado RR (2012) Somatic embryogenesis from ovaries of sweet orange cv. Tobias. Plant Cell Tissue Organ Cult 109:171–177

    Article  Google Scholar 

  • Castillo B, Smith MAL, Yadava UL (1998) Plant regeneration from encapsulated somatic embryos of Carica papaya L. Plant Cell Rep 17:172–176

    Article  CAS  Google Scholar 

  • Cheruvathur MK, Britto J, Thomas TD (2012a) Pulvinus: an ideal explant for plant regeneration in Caesalpinia bonduc (L.) Roxb., an important ethnomedicinal woody climber. Acta Physiol Plant 34:693–699

    Article  CAS  Google Scholar 

  • Cheruvathur MK, Sivu AR, Pradeep NS, Thomas TD (2012b) Shoot organogenesis from leaf callus and ISSR assessment for their identification of clonal fidelity in Rhinacanthus nasutus (L.) Kurz; a potent anticancerous ethnomedicinal plant. Ind Crop prod 40:122–128

    Article  CAS  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medicinal plants. Council of Scientific and Industrial Research, New Delhi 212

    Google Scholar 

  • Danso KE, Ford-Lloyd BV (2003) Encapsulation of nodal cuttings and shoot tips for storage and exchange of Cassava germplasm. Plant Cell Rep 21:718–725

    PubMed  CAS  Google Scholar 

  • Devendra BN, Srinivas N, Reddy AS (2011) High frequency somatic embryogenesis and plant regeneration in nodal explant cultures of Eclipta alba L. Ann Biol Res 2:143–149

    CAS  Google Scholar 

  • Dheda D, Dumortier F, Panis B, Vuylsteke D, De Langhe E (1991) Plant regeneration in cell suspension culture of cooking banana cv Bluggoe (Musa spp. ABB group). Fruits 46:125–135

    Google Scholar 

  • Duncan DB (1995) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Ganapathi TR, Suprasanna P, Bapat VA, Rao PS (1992) Propagation of banana through encapsulated shoot tips. Plant Cell Rep 11:571–575

    Article  Google Scholar 

  • Giridhar P, Kumar V, Ravishankar GA (2004) Somatic embryogenesis, organogenesis and regeneration from leaf callus culture of Decalepis hamiltonii wight and arn, an endangered shrub. In Vitro Cell Dev Biol Plant 40:567–571

    Article  CAS  Google Scholar 

  • Godishala V, Mangamoori L, Nanna R (2011) Plant regeneration via somatic embryogenesis in cultivated tomato (Solanum lycopersicum L.). J Cell Tissue Res 11:2521–2528

    CAS  Google Scholar 

  • Gotoh A, Sakaeda T, Kimura T, Kimachi T, Takemoto Y, Iida A, Iwakawa S, Hirai M, Tomita H (2004) Antiproliferative activity of Rhinacanthus nasutus (L.) KURZ extracts and the active moiety. Rhinacanthin C. Biol Pharm Bull 27:1070–1074

    Article  PubMed  CAS  Google Scholar 

  • Ipekci Z, Gozukirmizi N (2003) Direct somatic embryogenesis and synthetic seed production from Paulownia elongate. Plant Cell Rep 22:16–24

    Article  PubMed  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. Mc Graw-Hill Co, New York, pp 126–154

    Google Scholar 

  • Johnson M, Vallinayagam S, Manickam V, Seenp S (2002) Micropropagation of Rhinacanthus nasutus (L.) Kurz.: a medicinally important plant. Phytomorp 52:331–336

    Google Scholar 

  • Kerman MR, Sendle A, Chen JL, Jolad SD, Blanc P, Murphy JT, Stoddart CA, Nanakorn W, Balick MJ, Rozhon EJ (1997) Two new lignans with activity against influenza virus from the medicinal plants, Rhinacanthus nasutus. J Nat Prod 68:635–637

    Article  Google Scholar 

  • Kodama O, Ichikawa B, Akatsuka T (1993) Isolation and identification of an antifungal naphthopyran derivative from Rhinacanthus nasutus. J Nat Prod 56:292–294

    Article  PubMed  CAS  Google Scholar 

  • Kumar SP, Kumari BDR (2011) Factors affecting on somatic embryogenesis of safflower (Carthamus tinctorius L.) at morphological and biochemical levels. World J Agric Sci 7:197–205

    Google Scholar 

  • Kumar K, Thomas TD (2012) High frequency somatic embryogenesis and synthetic seed production in Clitoria ternatea Linn. Plant Cell Tissue Organ Cult 110:141–151

    Article  Google Scholar 

  • Latif Z, Idrees A, Nasir A, Riazuddin S (2007) Indigenous production of synthetic seeds in Daucus carota. Pak J Bot 39:849–855

    Google Scholar 

  • Lee KS, Zapata-Arias FJ, Brunner H, Afza R (1997) Histology of somatic embryo initiation and organogenesis from rhizome explants of Musa spp. Plant Cell Tissue Organ Cult 51:1–8

    Article  Google Scholar 

  • Malabadi R, Van Staden J (2005) Storability and germination of sodium alginate encapsulated somatic embryos derived from the vegetative shoot apices of mature Pinus patula trees. Plant Cell Tissue Organ Cult 82:259–265

    Article  CAS  Google Scholar 

  • Mani T, Senthil K (2011) Multiplication of Chrysanthemum through somatic embryogenesis. Asian J Pharm Tech 1:13–16

    Google Scholar 

  • Manjkhola S, Dhar U, Joshi M (2005) Organogenesis, embryogenesis, and synthetic seed production in Arnebia euchroma-a critically endangered medicinal plant of the Himalaya. In Vitro Cell Dev Biol Plant 41:244–248

    Article  Google Scholar 

  • Monotoro P, Etienne M, Carron MP, Naugarede A (1992) Incidence des cytokinines de l embryogenes a la qualite des embryones somatiques chez Hevea brasiliensis Mull. Arg CR Acad Sci Paris 315:567–574

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–477

    Article  CAS  Google Scholar 

  • Muthukumaraswamy S, Mohan VR, Kumaresan S, Chelladurai V (2003) Herbal remedies of Palliyar tribe of Grizzled giant squirrel wildlife sanctuary, Western Ghats, Srivilliputhur, Tamil Nadu for poisonous bites. J Econ Taxon Bot 27:761–764

    Google Scholar 

  • Ning GG, Bai SP, Bao MZ, Liu L (2007) Factors affecting plantlet regeneration from in vitro cultured immature embryos and cotyledons of Prunus mume “Xue mei”. In Vitro Cell Dev Biol Plant 43:95–100

    Google Scholar 

  • Nuno-Ayala A, Rodriguez-Garay B, Gutierrez-Mora A (2012) Somatic embryogenesis in Jarilla hetrophylla (Caricaceae). Plant Cell Tissue Organ Cult 109:33–39

    Article  Google Scholar 

  • Pinto DLP, Rocha de Almeida AM, Monteiro Rego M, Lemes da Silva M, Jardim de Oliveira E, Otoni WC (2011) Somatic embryogenesis from mature zygotic embryos of commercial passion fruit (Passiflora edulis Sims) genotypes. Plant Cell Tissue Organ Cult 107:521–530

    Article  Google Scholar 

  • Prewein C, Wilhelm E (2002) Plant regeneration from encapsulated somatic embryos of pedunculate oak (Quercus robur L.). In Vitro Cell Dev Biol Plant 39:613–617

    Google Scholar 

  • Puttarak P, Charoonratana T, Panichayupakarananta P (2010) Antimicrobial activity and stability of Rhinacanthins rich Rhinacanthus nasutus extract. Phytomedicine 17:323–332

    Article  PubMed  CAS  Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants—a review. Biotechnol Adv 27:671–679

    Article  PubMed  Google Scholar 

  • Rao PV, Naidu MD (2010) Rhinacanthus nasutus: a plant with potential activity in radical scavenging capacity. Curr Trends Biotechnol Pharm 17:323–327

    Google Scholar 

  • Ratanasanobon K, Seaton KA (2010) Development of in vitro plant regeneration of Australian native wax flowers (Chamelaucium spp.) via somatic embryogenesis. Plant Cell Tissue Organ Cult 100:59–64

    Article  Google Scholar 

  • Redenbaugh K, Paasch BD, Nichol JW, Kossler ME, Viss PR, Walker KA (1986) Somatic seeds: encapsulation of asexual plant embryos. Bio Technol 4:797–801

    Article  Google Scholar 

  • Rhimi N, Ben F, Boussaid M (2006) Plant regeneration via somatic embryogenesis from in vitro tissue culture in two Tunisian Cucumis melo cultivars Maazoun and Beji. Plant Cell Tissue Organ Cult 84:215–219

    Article  Google Scholar 

  • Robert DR, Flinn BS, Webb DT, Webster FB, Sutton BCS (1986) Characterization of immature embryos of interior Spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis. Plant Cell Rep 8:285–288

    Google Scholar 

  • Sarmah DK, Borthakur M, Borua PK (2010) Artificial seed production from encapsulated PLBs regenerated from leaf base of Vanda coerulea Grifft. ex. Lindl. an endangered orchid. Curr Sci 98:686–690

    CAS  Google Scholar 

  • Sattar MA, Abdullah NA, Khan AH, Noor AM (2004) Evaluation of anti-fungal and antibacterialactivity of a local plant Rhinacanthus nasutus (L.). J Biol Sci 4:498–500

    Article  Google Scholar 

  • Sendle A, Chen JL, Jolad SD, Stoddart C, Rozhon E, Kernan M (1996) Two new naphthoquinones with antiviral activity from Rhinacanthus nasutus. J Nat Prod 59:808–811

    Article  Google Scholar 

  • Sidky RA, Zaid ZE (2011) Direct production of somatic embryos and plant regeneration using TDZ and CPPU of date palm (Phoenix dactylifera L.). Int J Acad Res 3:792–796

    Google Scholar 

  • Siriwatanametanon N, Fiebich BL, Efferth T, Prieto JM, Heinrich JM (2010) Traditionally used Tai medicinal plants: in vitro anti- inflammatory, anticancer and antioxidant activities. J Ethnopharmacol 130:196–207

    Article  PubMed  Google Scholar 

  • Sivanesan I, Lim MY, Jeong BR (2011) Somatic embryogenesis and plant regeneration from leaf and petiole explants of Campanula punctata L. am. var. rubriflora Makino. Plant Cell Tissue Organ Cult 107:365–369

    Article  Google Scholar 

  • Subramaniam A (2006) Promising plants in the development of new life saving drugs for viral and fungal diseases. Curr Sci 90:480

    Google Scholar 

  • Tabassum B, Nasir IA, Farooq AM, Rehman Z, Latif Z, Husnain T (2010) Viability assessment of in vitro produced synthetic seeds of cucumber. Afr J Biotech 9:7026–7032

    CAS  Google Scholar 

  • Utomo HS, Wenefrida I, Meche MM, Nash JL (2008) Synthetic seed as a potential direct delivery system of mass produced somatic embryos in the coastal marsh plant smooth cordgrass (Spartina alterniflora). Plant Cell Tissue Organ Cult 92:281–291

    Article  CAS  Google Scholar 

  • Vega R, Vásquez N, Espinoza AM, Gatica AM, Valdez-Melara M (2009) Histology of somatic embryogenesis in rice (Oryza sativa cv. 5272). Int J Trop Biol 57:141–150

    Google Scholar 

  • Vieira Santos A, Arrigoni-Blank MF, Fitzgerald Blank A, Cardamone Diniz LE, Pereira Fernandes RM (2011) Biochemical profile of callus cultures of Pogostemon cablin (Blanco) Benth. Plant Cell Tissue Organ Cult 107:35–43

    Article  Google Scholar 

  • Vila S, Gonzalez A, Rey H, Mroginki L (2003) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Melia azedarach (Meliaceae). In Vitro Cell Dev Biol Plant 39:283–287

    CAS  Google Scholar 

  • Wu TS, Hsu HC, Wu PL, Teng CH, Wu YC (1998) Rhinacanthin-Q, a naphthoquinone from Rhinacanthus nasutus and its biological activity. Phytochem 49:2001–2003

    Article  CAS  Google Scholar 

  • Yuan X, Wang BZ, Liu J, She J (2009) Development of a plant regeneration system from seed-derived calluses of centipede grass [Eremochloa ophiuroides (Munro.) Hack]. Sci Hortic 120:96–100

    Article  Google Scholar 

Download references

Acknowledgments

MKC is thankful to M.G. University, Kottayam, Kerala, India for the financial assistance in the form of Junior Research Fellowship and to the Principal, St. Thomas College, Pala for providing all the laboratory facilities. TDT acknowledges the financial assistance from UGC in the form of a major research project (Project no. 38-233/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dennis Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheruvathur, M.K., Kumar, G.K. & Thomas, T.D. Somatic embryogenesis and synthetic seed production in Rhinacanthus nasutus (L.) Kurz.. Plant Cell Tiss Organ Cult 113, 63–71 (2013). https://doi.org/10.1007/s11240-012-0251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0251-5

Keywords

Navigation