Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 104, Issue 3, pp 387–397

Genomic aspects of research involving polyploid plants

  • Xiaohan Yang
  • Chu-Yu Ye
  • Zong-Ming Cheng
  • Timothy J. Tschaplinski
  • Stan D. Wullschleger
  • Weilun Yin
  • Xinli Xia
  • Gerald A. Tuskan
Review

DOI: 10.1007/s11240-010-9826-1

Cite this article as:
Yang, X., Ye, CY., Cheng, ZM. et al. Plant Cell Tiss Organ Cult (2011) 104: 387. doi:10.1007/s11240-010-9826-1

Abstract

Almost all extant plant species have doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been developed during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomic diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. Polyploids will be a focus of genomic research in the future as rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

Keywords

Evolution Genetics Epigenetics 

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Xiaohan Yang
    • 1
    • 2
  • Chu-Yu Ye
    • 1
    • 2
  • Zong-Ming Cheng
    • 2
    • 4
  • Timothy J. Tschaplinski
    • 1
    • 2
  • Stan D. Wullschleger
    • 3
  • Weilun Yin
    • 5
  • Xinli Xia
    • 5
  • Gerald A. Tuskan
    • 1
    • 2
  1. 1.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.BioEnergy Science CenterOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of Plant SciencesUniversity of TennesseeKnoxvilleUSA
  5. 5.National Engineering Laboratory for Tree BreedingBeijing Forestry UniversityBeijingChina

Personalised recommendations