, Volume 90, Issue 3, pp 275-283
Date: 31 Jul 2007

Production and molecular characterization of potential seedless cybrid plants between pollen sterile Satsuma mandarin and two seedy Citrus cultivars

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Cytoplasmic male sterility (CMS) is known to be controlled by mitochondrial genome in higher plants including Satsuma mandarin (Citrus unshiu Marc.). Citrus symmetric fusion experiments often produce diploid cybrids possessing nuclear DNA from the mesophyll parent and mitochondrial DNA (mtDNA) from the embryogenic callus parent. Therefore, it is possible to transfer CMS from Satsuma mandarin as callus parent to seedy citrus cultivars as leaf one by somatic cybridization. Herein, symmetric fusion technique was adopted to create cybrids for potential seedlessness by transferring CMS from Citrus unshiu Marc. cv. Guoqing No. 1 (G1) to two traditional Chinese seedy citrus cultivars, ‘Shatian’ pummelo (C. grandis (L) Osbeck) and ‘Bingtang’ orange (C. sinensis (L) Osbeck). Flow cytometry analysis showed that 19 plants recovered from G1 + ‘Bingtang’ orange and 17 of 35 plants regenerated from G1 + ‘Shatian’ pummelo were diploid. The remaining plants from G1 + ‘Shatian’ pummelo were tetraploid. The diploid plants from the two combinations were confirmed as true cybrids by simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) analysis, with nuclear DNA from their corresponding leaf parent and mtDNA from their common suspension parent, G1 Satsuma mandarin. The remaining plants from G1 + ‘Shatian’ pummelo were identified as somatic hybrids with mtDNA from G1. The chloroplast simple sequence repeat (cp-SSR) analysis revealed somatic hybrid/cybrid plants from the two combinations in most cases possessed either of their parental chloroplast type, and two plants from G1 +‘Shatian’ pummelo and all embryoids analyzed from G1 + ‘Bingtang’ orange possessed chloroplast DNA (cpDNA) from both parents. These results demonstrated that we succeeded in introducing mtDNA from G1 Satsuma mandarin into the two target seedy citrus cultivars for potential seedlessness through symmetric fusion.