Skip to main content
Log in

Spectral properties of a thin layer with a doubly periodic family of thinning regions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the spectrum of the Dirichlet problem for the Laplace operator in a layer with a doubly periodic structure has gaps and determine several characteristics of their location. The result is obtained by asymptotic analysis of a model spectral problem on the periodicity cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Sh. Birman and M. Z. Solomjak, Spectral Theory of Selfadjoint Operators in Hilbert Space [in Russian], Leningrad State Univ. Press, Leningrad (1980); English transl., D. Reidel, Dordrecht (1987).

    Google Scholar 

  2. P. A. Kuchment, Russian Math. Surveys, 37, 1–60 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M. M. Skriganov, Geometric and Arithmetical Methods in the Spectral Theory of Multidimensional Periodic Operators [in Russian] (Trudy Mat. Inst. Akad. Nauk, Vol. 171), Nauka, Leningrad (1985).

    MATH  Google Scholar 

  4. P. Kuchment, Floquet Theory for Partial Differential Equations (Operator Theory Adv. Appl., Vol. 60), Birchäuser, Basel (1993).

    Book  MATH  Google Scholar 

  5. I. M. Gel’fand, Dokl. Akad. Nauk SSSR, 73, 1117–1120 (1950).

    MATH  Google Scholar 

  6. O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973); English transl. (Appl. Math. Sci., Vol. 49), Springer, New York (1985).

    Google Scholar 

  7. I. V. Kamotskii and S. A. Nazarov, “On eigenfunctions localized near the edge of a thin domain [in Russian],” in: Problemy Mat. Analiza, No. 19, Nauchnaya Kniga, Novosibirsk (1999), pp. 105–148.

    Google Scholar 

  8. S. A. Nazarov, Math. Bohem., 127, 283–292 (2002).

    MathSciNet  MATH  Google Scholar 

  9. G. Cardone, T. Durante, and S. A. Nazarov, SIAM J. Math. Anal., 42, 2581–2609 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Friedlander and M. Solomyak, Russ. J. Math. Phys., 15, 238–242 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Friedlander and M. Solomyak, Israel J. Math., 170, 337–354 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Yoshitomi, J. Differ. Equations, 142, 123–166 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Kozlov, J. Differ. Equations, 230, 532–555 (2006).

    Article  MATH  Google Scholar 

  14. J. Hadamard, “Mémoire sur le problème d’analyse relatif à l’équilibre des plaques èlastiques encastrés,” in: OEuvres, Vol. 2, Editions du CNRS, Paris (1968), pp. 515–631.

    Google Scholar 

  15. L. A. Ivanov, L. A. Kotko, and S. G. Krein, “Boundary value problems in variable domains [in Russian],” in: Differents. uravn. i ikh primen., No. 19, Izdat. Akad. Nauk Lit.SSR, Vilnius (1977).

    Google Scholar 

  16. M. I. Vishik and L. A. Lyusternik, Amer. Math. Soc. Transl. (2), 20, 239–364 (1962).

    MathSciNet  Google Scholar 

  17. S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods: Dimensionality Reduction and Integral Estimates [in Russian], Nauchnaya Kniga, Novosibirsk (2002).

    Google Scholar 

  18. W. G. Mazja, S. A. Nazarov, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten (Math. Lehrbücher Monogr., Vol. 82), Vol. 1, Akademie, Berlin (1991).

    Google Scholar 

  19. S. A. Nazarov and M. V. Olyushin, St. Petersburg Math. J., 5, 371–387 (1994).

    MathSciNet  Google Scholar 

  20. S. A. Nazarov, “On optimization of a patch [in Russian],” in: Problemy Mat. Analiza, No. 42, Nauchnaya Kniga, Novosibirsk (2009), pp. 65–82.

    Google Scholar 

  21. S. A. Nazarov, K. Ruotsalainen, and Ya. Taskinen, “Spectral gaps in Dirichlet and Neumann problems on a plane perforated by a doubly periodic family of circular holes [in Russian],” in: Problemy Mat. Analiza, No. 62, Nauchnaya Kniga, Novosibirsk (2011), pp. 51–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 174, No. 3, pp. 398–415, March, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A. Spectral properties of a thin layer with a doubly periodic family of thinning regions. Theor Math Phys 174, 343–359 (2013). https://doi.org/10.1007/s11232-013-0031-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0031-3

Keywords

Navigation