Theoretical and Mathematical Physics

, Volume 160, Issue 1, pp 894–904

Exact solutions of a generalized Boussinesq equation


DOI: 10.1007/s11232-009-0079-2

Cite this article as:
Bruzón, M.S. Theor Math Phys (2009) 160: 894. doi:10.1007/s11232-009-0079-2


We analyze a generalized Boussinesq equation using the theory of symmetry reductions of partial differential equations. The Lie symmetry group analysis of this equation shows that the equation has only a two-parameter point symmetry group corresponding to traveling-wave solutions. To obtain exact solutions, we use two procedures: a direct method and the G′/G-expansion method. We express the traveling-wave solutions in terms of hyperbolic, trigonometric, and rational functions.


partial differential equationsymmetrysolution

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de CádizCádizSpain