Skip to main content
Log in

The relation between the Jacobi morphism and the Hessian in gauge-natural field theories

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We generalize a classic result, due to Goldschmidt and Sternberg, relating the Jacobi morphism and the Hessian for first-order field theories to higher-order gauge-natural field theories. In particular, we define a generalized gauge-natural Jacobi morphism where the variation vector fields are Lie derivatives of sections of the gauge-natural bundle with respect to gauge-natural lifts of infinitesimal principal automorphisms, and we relate it to the Hessian. The Hessian is also very simply related to the generalized Bergmann-Bianchi morphism, whose kernel provides necessary and sufficient conditions for the existence of global canonical superpotentials. We find that the Hamilton equations for the Hamiltonian connection associated with a suitably defined covariant strongly conserved current are satisfied identically and can be interpreted as generalized Bergmann-Bianchi identities and thus characterized in terms of the Hessian vanishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Goldschmidt and S. Sternberg, Ann. Inst. Fourier, 23, 203–267 (1973).

    MATH  Google Scholar 

  2. A. V. Bocharov et al., Symmetries and Laws of Conservation for Equations of Mathematical Physics [in Russian], Faktorial, Moscow (1997); English transl.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, (Transl. Math. Monogr., Vol. 182, I. S. Krasil’shchik and A. M. Vinogradov, eds.), Amer. Math. Soc., Providence, R. I. (1999).

    Google Scholar 

  3. I. Kolář, P. W. Michor, and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin (1993).

    Google Scholar 

  4. D. Krupka, “Some geometric aspects of variational problems in fibred manifolds,” in: Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica, Vol. 14, J. E. Purkyně Univ., Brno (1973), p. 1–65; arXiv:math-ph/0110005v2 (2001).

    Google Scholar 

  5. B. A. Kuperschmidt, “Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism,” in: Geometric Methods in Mathematical Physics (Lect. Notes Math., Vol. 775, G. Kaiser and J. E. Marsden, eds.), Springer, Berlin (1980), p. 162–218.

    Chapter  Google Scholar 

  6. P. J. Olver, Applications of Lie Groups to Differential Equations (Grad. Texts in Math., Vol. 107, 2nd ed.), Springer, New York (1993).

    MATH  Google Scholar 

  7. R. S. Palais, Foundations of Global Non-linear Analysis, Benjamin, New York (1968).

    MATH  Google Scholar 

  8. D. J. Saunders, The Geometry of Jet Bundles (London Math. Soc. Lect. Note Ser., Vol. 142), Cambridge Univ. Press, Cambridge (1989).

    MATH  Google Scholar 

  9. A. M. Vinogradov, J. Math. Anal. Appl., 100, No. 1, 1–40, 41–129 (1984).

    Article  MATH  Google Scholar 

  10. F. Takens, J. Differential Geom., 14, 543–562 (1979).

    MATH  Google Scholar 

  11. W. M. Tulczyjew, Bull. Soc. Math. France, 105, 419–431 (1977).

    MATH  Google Scholar 

  12. A. M. Vinogradov, Soviet Math. Dokl., 18, 1200–1204 (1977).

    MATH  Google Scholar 

  13. A. M. Vinogradov, Soviet Math. Dokl., 19, 144–148 (1978).

    MATH  Google Scholar 

  14. R. Vitolo, Differential Geom. Appl., 10, 225–255 (1999).

    Article  MATH  Google Scholar 

  15. P. G. Bergmann, Phys. Rev., 75, 680–685 (1949).

    Article  MATH  ADS  Google Scholar 

  16. E. Noether, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 2, 235–257 (1918).

    Google Scholar 

  17. L. Fatibene, M. Francaviglia, and M. Palese, Math. Proc. Cambridge Philos. Soc., 130, 555–569 (2001).

    Article  MATH  ADS  Google Scholar 

  18. P. Matteucci, Rep. Math. Phys., 52, 115–139 (2003).

    Article  MATH  Google Scholar 

  19. J. L. Anderson and P. G. Bergmann, Phys. Rev., 83, 1018–1025 (1951).

    Article  MATH  ADS  Google Scholar 

  20. M. Palese and E. Winterroth, Arch. Math. (Brno), 41, 289–310 (2005).

    MATH  Google Scholar 

  21. M. Palese and E. Winterroth, Rep. Math. Phys., 54, 349–364 (2004).

    Article  MATH  Google Scholar 

  22. M. Francaviglia, M. Palese, and E. Winterroth, Rep. Math. Phys., 56, 11–22 (2005); arXiv: math-ph/0407054v4 (2004).

    Article  MATH  Google Scholar 

  23. M. Francaviglia, M. Palese, and E. Winterroth, “Second variational derivative of gauge-natural invariant Lagrangians and conservation laws,” in: Differential Geometry and its Applications (Proc. 9th Intl. Conf., Prague, Czech Republic, 2004, J. Bures et al., eds.), Matfyzpress, Prague (2005), p. 591–604.

    Google Scholar 

  24. M. Palese and E. Winterroth, “Gauge-natural field theories and Noether theorems: Canonical covariant conserved currents,” in: Proc. 25th Winter School “Geometry and Physics,” Srni, January 15–22, 2005 (Suppl., Serie II num. 79), Rend. Circ. Mat., Palermo (2006), pp. 161–174.

    Google Scholar 

  25. M. Francaviglia, M. Palese, and R. Vitolo, Differential Geom. Appl., 22, 105–120 (2005).

    Article  MATH  Google Scholar 

  26. M. Giaquinta and S. Hildebrandt, Calculus of Variations (Grundlehren Math. Wiss., Vol. 310), Vol. 1, The Lagrangian Formalism, Springer, Berlin (1996).

    Google Scholar 

  27. R. Vitolo, Math. Proc. Cambridge Philos. Soc., 125, 321–333 (1999).

    Article  MATH  ADS  Google Scholar 

  28. D. J. Eck, Mem. Amer. Math. Soc., 33, No. 247, 1–48 (1981).

    Google Scholar 

  29. I. Kolář, J. Geom. Phys., 1, 127–137 (1984).

    Article  Google Scholar 

  30. I. Kolář and R. Vitolo, Math. Proc. Cambridge Philos. Soc., 135, 277–290 (2003).

    Article  ADS  Google Scholar 

  31. D. Krupka, “Variational sequences on finite order jet spaces,” in: Differential Geometry and its Applications (Brno, Czechoslovakia, 1989, J. Janyška and D. Krupka, eds.), World Scientific, Singapore (1990), p. 236–254.

    Google Scholar 

  32. M. Francaviglia, M. Palese, and R. Vitolo, Czech. Math. J., 52(127), 197–213 (2002).

    Article  MATH  Google Scholar 

  33. M. Godina and P. Matteucci, Int. J. Geom. Meth. Mod. Phys., 2, 159–188 (2005).

    Article  Google Scholar 

  34. A. Trautman, Comm. Math. Phys., 6, 248–261 (1967).

    Article  MATH  ADS  Google Scholar 

  35. L. Mangiarotti and G. Sardanashvily, Connections in Classical and Quantum Field Theory, World Scientific, Singapore (2000).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Palese.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 152, No. 2, pp. 377–389, August, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palese, M., Winterroth, E. The relation between the Jacobi morphism and the Hessian in gauge-natural field theories. Theor Math Phys 152, 1191–1200 (2007). https://doi.org/10.1007/s11232-007-0102-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0102-4

Keywords

Navigation