Allwein, G., Barwise, J. (eds) (1996) Logical reasoning with diagrams. Oxford University Press, New York

Avigad J., Dean E., Mumma J. (2009) A formal system for Euclid’s elements. Review of Symbolic Logic 2(4): 700–768

CrossRefAvigad, J., Donnelly, K., Gray, D., & Raff, P. (2007). A formally verified proof of the prime number theorem. *ACM Transactions on Computational Logic* 9(1), Art. 2.

Azzouni J. (2004) The derivation-indicator view of mathematical practice. Philosophia Mathematica 12(2): 81–105

CrossRefBarker-Plummer D., Bailin S. C., Ehrlichman S. M. (1996) Diagrams and mathematics. In: Selman B., Kautz H. (eds) Proceedings of the Fourth International Symposium on Artificial Intelligence and Mathematics. Fort Lauderdale, FL, pp 14–17

Barwise J., Etchemendy J. (1996) Heterogeneous logic. In: Allwein G., Barwise J. (eds) Logical reasoning with diagrams. Oxford University Press, New York, NY, pp 179–200

Feferman, S. (1979). What does logic have to tell us about mathematical proofs?. *The Mathematical Intelligencer* 2, 20–24. (Reprinted as Ch. 9 in Feferman 1998).

Feferman S. (1998) In the Light of Logic. Oxford University Press, New York, NY

Feferman S. (2000) Mathematical intuition versus mathematical monsters. Synthese 125(3): 317–332

CrossRefHahn, H. (1933). The crisis in intuition. In *Empiricism, logic, and mathematics: philosophical papers, Vol. 13 of Vienna circle collection* (pp. 73–102). Dordrecht: D. Reidel Publishing Company

Hodges W. (1997) A shorter model theory. Cambridge University Press, Cambridge

Hrbacek K., Jech T. (1999) Introduction to set theory, Vol. 220 of monographs and textbooks in pure and applied mathematics. (3rd ed.). Marcel Dekker Inc., New York

Jamnik M. (2001). *Mathematical reasoning with diagrams*, Vol. 127 of CSLI Lecture Notes. Stanford, CA: CSLI Publications. (With a foreword by J. A. Robinson).

Jans J. P. (1964) Rings and homology. Holt, Rinehart and Winston, New York

Kuratowski K., Mostowski A. (1968) Set theory. (Translated from the Polish by M. Maczyński). PWN-Polish Scientific Publishers, Warsaw

Leitgeb H. (2009) On formal and informal provability. In: Bueno O., Linnebo Ø. (eds) New Ways in the Philosophy of Mathematics. Palgrave Macmillan, New York, NY, pp 263–299

Mac Lane S. (1975) Homology. Springer-Verlag, Berlin

Mancosu P. (2005) Visualization in logic and mathematics. In: Mancosu P., Jørgensen K., Pedersen S. (eds) Visualization, explanation and reasoning styles in mathematics, Vol. 327 of Synthese Library. Springer, Netherlands, pp 13–30

CrossRefManders K. (2008) Diagram-based geometric practice. In: Mancosu P. (eds) The philosophy of mathematical practice. Oxford University Press, New York, NY, pp 65–79

CrossRefManders K. (2008) The Euclidean Diagram (1995). In: Mancosu P. (eds) The philosophy of mathematical practice. Oxford University Press, Oxford, pp 80–133

CrossRefMumma, J. (2006). *Intuition formalized: Ancient and modern methods of proof in elementary geometry*. Ph.D. thesis, Carnegie-Mellon University.

Nelsen R. B. (1993) Proofs without words: Exercises in visual thinking. Mathematical Association of America, Washington, DC

Nipkow, T., Paulson, L. C., & Wenzel, M. (2002) Isabelle/HOL—A proof assistant for higher-order logic, Vol. 2283 of LNCS. Berlin, New York: Springer.

Pelc A. (2009) Why do we believe theorems?. Philosophia Mathematica 17(1): 84–94

CrossRefPoincaré, H. (1952). *Science and method* (Translated by Francis Maitland. With a preface by Bertrand Russell). New York: Dover Publications Inc.

Rav Y. (1999) Why do we prove theorems?. Philosophia Mathematica 7(1): 5–41

CrossRefRav Y. (2007) A critique of a formalist-mechanist version of the justification of arguments in mathematicians’ proof practices. Philosophia Mathematica 15(3): 291–320

CrossRefShin, S.-J., & Lemon, O. (2008). Diagrams. In E.N. Zalta (Ed.)

*The Stanford encyclopedia of philosophy*. CSLI, winter 2008 edition. URL:

http://plato.stanford.edu/archives/win2008/entries/diagrams/.