Skip to main content
Log in

Hilbert, logicism, and mathematical existence

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

David Hilbert’s early foundational views, especially those corresponding to the 1890s, are analysed here. I consider strong evidence for the fact that Hilbert was a logicist at that time, following upon Dedekind’s footsteps in his understanding of pure mathematics. This insight makes it possible to throw new light on the evolution of Hilbert’s foundational ideas, including his early contributions to the foundations of geometry and the real number system. The context of Dedekind-style logicism makes it possible to offer a new analysis of the emergence of Hilbert’s famous ideas on mathematical existence, now seen as a revision of basic principles of the “naive logic” of sets. At the same time, careful scrutiny of his published and unpublished work around the turn of the century uncovers deep differences between his ideas about consistency proofs before and after 1904. Along the way, we cover topics such as the role of sets and of the dichotomic conception of set theory in Hilbert’s early axiomatics, and offer detailed analyses of Hilbert’s paradox and of his completeness axiom (Vollständigkeitsaxiom).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Badesa C. (2004) The birth of model theory: Löwenheim’s theorem in the frame of the theory of relatives. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Bernays P. (1935) Hilberts Untersuchungen über die Grundlagen der Arithmetik. In: (eds) Gesammelte Abhandlungen Vol. 3. Springer, Berlin, pp 196–216

    Google Scholar 

  • Bernays, P. (1935b). Sur le platonisme dans les mathématiques. L’Enseignement Mathématique, 34, 52–69. German trans. in Bernays (1976), English in Benacerraf & Putnam (1983), pp. 258–271.

  • Bernays P. (1976) Abhandlungen zur Philosophie der Mathematik. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Cantor, G. (1883). Grundlagen einer allgemeinen Mannichfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen. Leipzig: Teubner. Also (without preface) in Mathematische Annalen (Vol. 21), and in Cantor (1932), pp. 165–208; references to the latter. English trans. in Ewald (1996), Vol. 2.

  • Cantor, G. (1892). Über eine elementare Frage der Mannigfaltigkeitslehre, Jahresbericht der DMV (Vol. 1, pp. 75–78). References to Cantor (1932), pp. 278–280. English trans. in Ewald (1996), Vol. 2.

  • Cantor, G. (1895). Beiträge zur Begründung der transfiniten Mengenlehre. MA (Vol. 46, pp. 481–512). References to Cantor (1932), pp. 282–311.

  • Cantor, G. (1932). In E. Zermelo (Ed.), Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Berlin, Springer. Reprint Hildesheim, G. Olms, 1966.

  • Dedekind, R. (1871). Über die Komposition der binären quadratischen Formen, Supplement X to 2nd edn. of J.P.G. Lejeune-Dirichlet, Vorlesungen über Zahlentheorie, ed. Dedekind (4th ed.), Braunschweig, Vieweg, 1871. References to the partial reprint in Gesammelte Werke, Vol. 3 (Vieweg, 1932), pp. 223–261.

  • Dedekind, R. (1872). Stetigkeit und irrationale Zahlen, reprinted in Gesammelte Werke, Vol. 3 (Braunschweig, Vieweg, 1932). English translation in Ewald (1996), Vol. 2.

  • Dedekind, R. (1888). Was sind und was sollen die Zahlen? reprinted in Gesammelte Werke, Vol. 3 (Braunschweig, Vieweg, 1932). English translation in Ewald (1996), Vol. 2.

  • Dedekind, R. (1957). 1890. Letter to Keferstein, 27.02.1890, English translation in Van Heijenoort (1967), 98–103. First published in H. Wang, The axiomatisation of arithmetic. Journal of Symbolic Logic, 22, 145–158.

  • Dedekind, R., & Weber, H. (1882). Theorie der algebraischen Funktionen einer Veränderlichen, Journal für die reine und angewandte Mathematik Vol. 92. (1882) (dated Oct. 1880). In Dedekind’s Gesammelte Werke, Vol. 1 (Braunschweig, Vieweg, 1930), pp. 238–350.

  • Ewald, W. (1996). From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2). Oxford University Press.

  • Ferreirós J. (1996) Traditional logic and the early history of sets, 1854–1908. Archive for History of Exact Sciences 50: 5–71. doi:10.1007/BF00375789

    Article  Google Scholar 

  • Ferreirós, J. (1997). Notes on types, sets and logicism, 1930–1950. Theoria, 12, 91–124. San Sebastián.

  • Ferreirós J. (1999) Labyrinth of thought. A history of set theory and its role in modern mathematics. Basel/Boston, Birkhäuser

    Google Scholar 

  • Ferreirós J. (2001) The road to modern logic—An interpretation. The Bulletin of Symbolic Logic 7: 441–484. doi:10.2307/2687794

    Article  Google Scholar 

  • Ferreirós, J. (2005). R. Dedekind (1888) & G. Peano (1889). In I. Grattan-Guinness (Ed.), Landmark writings in western mathematics 1640–1940 (Chap. 47, pp. 613–626). Amsterdam: Elsevier.

  • Frege, G. (1879). Begriffschrift. Nebert: Halle. Reprint in Hildesheim, Olms, 1964.

  • Frege, G. (1893). Grundgesetze der Arithmetik (Vol. 1). Pohl: Jena. Reprint Hildesheim, Olms, 1966.

  • Frege, G. (1903). Grundgesetze der Arithmetik (Vol. 2). Pohl: Jena. Reprint Hildesheim, Olms, 1966.

  • Frege G. (1976) Wissenschaflicher Briefwechsel. Felix Meiner, Hamburg

    Google Scholar 

  • Garciadiego, A. (1992). Bertrand Russell y los orígenes de las “paradojas” de la teoría de conjuntos. Madrid, Alianza Editorial. English version in Basel, Birkhäuser, 1992.

  • Grattan-Guinness, I. (eds) (1980) From the calculus to set theory, 1630–1910. Duckworth, London

    Google Scholar 

  • Gray, J. J. (2000). The Hilbert challenge. Oxford University Press.

  • Hallett, M. (2008). Hilbert on number, geometry and continuity. The Bulletin of Symbolic Logic, to appear.

  • Hilbert, D. (1893). Über die vollen Invariantensysteme, Mathematische Annalen (Vol. 42, pp. 313–373). Reprint in Gesammelte Abhandlungen, Berlin, Springer, Vol. 2, pp. 287–344.

  • Hilbert, D. (1897). Bericht über die Theorie der algebraischen Zahlen, Jahresbericht der DMV (Vol. 4). Reprint in Gesammelte Abhandlungen. Berlin, Springer, Vol. 1, 1932. English translation as The Theory of Algebraic Number Fields, Berlin/New York, Springer, 1998.

  • Hilbert, D. (1897/98). Zahlbegriff und Quadratur des Kreises (Vorlesungen, Winter-Semester 1897/98), Universitäts-Bibliothek Göttingen, Cod. Ms. 549. Publication forthcoming In W. Ewald, M. Hallett, W. Sieg, & U. Majer (Eds.), Hilbert’s lectures on the foundations of arithmetic and logic, 1894–1917. Berlin: Springer.

  • Hilbert, D. (1899). Grundlagen der Geometrie. In Festschrift zur Feier der Enthüllung des Gauss–Weber Denkmals in Göttingen. Leipzig, Teubner. 7th edn. Revised and with additions, Berlin, Springer, 1930. Centenary edn, Leipzig, Teubner, 1999.

  • Hilbert, D. (1900a). Über den Zahlbegriff, Jahresbericht der Deutschen Mathematiker-Vereinigung (Vol. 8, pp. 180–184). Reprinted with some changes in the 7th edn. of Hilbert (1899), but references are to the original. English translation in Ewald (1996), Vol. 2.

  • Hilbert, D. (1900b). Mathematische Probleme. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen, 1900, pp. 253–297. References to the reprint in Gesammelte Abhandlungen, Vol. 3, Berlin, Springer, 1935, pp. 290–329. English translation in Gray (2000).

  • Hilbert, D. (1905a). Über die Grundlagen der Logik und Arithmetik, Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg (pp. 174–185). Leipzig: Teubner. References to the English translation in van Heijenoort (1967), pp. 129–138.

  • Hilbert, D. (1905b). Logische Principien des mathematischen Denkens (Vorlesungen, SS 1905, ausgearbeitet von E. Hellinger), Mathematisches Institut der Universität Göttingen. To appear in Vol. 2 of David Hilbert’s Lectures on the Foundations of Mathematics and Physics. Berlin: Springer.

  • Hilbert, D. (1918). Axiomatisches Denken, Mathematische Annalen (Vol. 78, pp. 405–415). Reprinted in Gesammelte Abhandlungen, Vol. 3. Berlin: Springer, 1935, pp. 146–156. References to the original edn.

  • Hilbert, D. (1922). Neubegründung der Mathematik. Abhandlungen mathematischen Seminar Universität Hamburg (Vol. 1, pp. 157–177). References to the reprint in Gesammelte Abhandlungen, Vol. 3. Berlin, Springer, 1935, pp. 157–177. English trans. in Ewald (1996), Vol. 2.

  • Hilbert, D. (1926). Über das Unendliche, Math. Annalen (Vol. 95, pp. 161–190). Shortened version in [Hilbert 1930]. References to the English translation in van Heijenoort (1967), pp. 367–392

  • Hilbert, D. (2004). In M. Hallett & U. Majer (Eds.), David Hilbert’s lectures on the foundations of geometry, 1891–1902. Berlin: Springer.

  • Hilbert D., Ackermann W. (1928) Grundzüge der theoretischen Logik. Springer, Berlin

    Google Scholar 

  • Mancosu, P. (1998). From Hilbert to Brouwer: The debate on the foundations of mathematics in the 1920s. Oxford University Press.

  • Mancosu P. (2003) The Russellian influence on Hilbert and his School. Synthese 137: 59–101. doi:10.1023/A:1026278800910

    Article  Google Scholar 

  • McLarty, C. (2006). Emmy Noether’s “Set-theoretic” Topology: From Dedekind to the rise of functors. In J. Ferreirós & J. Gray (Eds.), The architecture of modern mathematics. Oxford University Press.

  • Meschkowski H., Nilson W. (1991) Georg Cantor: Briefe. Springer, Berlin

    Google Scholar 

  • Moore G.H. (1997) Hilbert and the emergence of modern mathematical logic. Theoria 12: 65–90

    Google Scholar 

  • Moore G.H., Garciadiego A. (1981) Burali-Forti’s Paradox: A reappraisal of its origins. Historia Mathematica 8: 319–350. doi:10.1016/0315-0860(81)90070-7

    Article  Google Scholar 

  • Peano, G. (1889). Arithmetices principia, nova methodo exposita. Torino: Bocca. Partial English trans. in van Heijenoort (1967), pp. 83–97.

  • Peano, G. (1891). Sul concetto di numero, Rivista di matematica, 1, 87–102, 256–267. Also in Opere scelte, Vol. 3, Rome. Cremonese, 1959, 80–109.

  • Peano, G. (1898). Formulaire de mathématiques, Vol. II, art. 2: Arithmétique, Turin: Bocca, 1898. Extract in Opere scelte, vol. 3, Rome: Cremonese, 1959, pp. 215–231 (see also 232–248).

  • Peckhaus V. (1990) Hilbertprogramm und kritische Philosophie. Göttingen, Vandenhoeck & Ruprecht

    Google Scholar 

  • Peckhaus V., Kahle R. (2002) Hilbert’s Paradox. Historia Mathematica 29(2): 157–175

    Article  Google Scholar 

  • Purkert W., Ilgauds H.J. (1987) Georg Cantor 1845–1918. Basel/Boston/Stuttgart, Birkhäuser

    Google Scholar 

  • Reid C. (1970) Hilbert. Springer, New York/Berlin

    Google Scholar 

  • Riemann, B. (1868). Über die Hypothesen, welche der Geometrie zu Grunde liegen [1854], in Gesammelte mathematische Werke (Berlin, Springer/Teubner, 1990), pp. 272–287. Translation in Ewald (1996), Vol. 2.

  • Rowe, D. E. (2000). The calm before the storm: Hilbert’s early views on foundations. In V. F. Hendricks, et al. (Eds.), Proof theory (pp. 55–93). Kluwer Academic Publishers.

  • Russell, B. (1903). The principles of mathematics. Cambridge University Press (2nd edn. 1937). Reprint London, Allen & Unwin, 1948.

  • Russell B. (1919) Introduction to mathematical philosophy. Allen & Unwin, London

    Google Scholar 

  • Schröder, E. (1895). Vorlesungen über die Algebra der Logik (Vol. 3). Leipzig: Teubner. Reprint: New York, Chelsea, 1966.

  • Sieg W. (1988) Hilbert’s programs: 1917–1922. The Bulletin of Symbolic Logic 5: 1–44 doi: 10.2307/421139

    Google Scholar 

  • Sieg, W. (1990). Relative consistency and accessible domains. Synthese, 84, 259–297. Reprinted in J. Ferreirós & J. Gray (Eds.), The architecture of modern mathematics. Oxford University Press, 2006.

  • Sieg, W. (2002). Beyond Hilbert’s reach? In D. Malament (Ed.), Reading natural philosophy—Essays in the history and philosophy of science and mathematics (pp. 363–405). Open Court Press.

  • Sieg W., Schlimm D. (2005) Dedekind’s analysis of number: Systems and axioms. Synthese 147: 121–170. doi:10.1007/s11229-004-6300-9

    Article  Google Scholar 

  • Toepell M. (1986) Über die Entstehung von David Hilberts “Grundlagen der Geometrie”. Göttingen, Vandenhoeck & Ruprecht

    Google Scholar 

  • Van Heijenoort J. (1967) From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard Univesity Press, Cambridge/London

    Google Scholar 

  • Weyl, H. (1918). Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis. Leipzig: Veit. References to the reprint New York, Chelsea.

  • Weyl H. (1946) Mathematics and logic A brief survey serving as a preface to a review of “The Philosophy of Bertrand Russell”. The American Mathematical Monthly 53: 2–13 doi: 10.2307/2306078

    Article  Google Scholar 

  • Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre. I, Math. Annalen, 65, 261–281. References to English translation in van Heijenoort (1967), pp. 199–215.

  • Zermelo, E. (1930). Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae, 16, 29–47. English translation in Ewald (1996), Vol. 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ferreirós.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreirós, J. Hilbert, logicism, and mathematical existence. Synthese 170, 33–70 (2009). https://doi.org/10.1007/s11229-008-9347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-008-9347-1

Keywords

Navigation