, Volume 163, Issue 2, pp 119–131

Structuralism as a philosophy of mathematical practice


    • Department of Mathematics and Computer ScienceUniversity of Southern Denmark

DOI: 10.1007/s11229-007-9169-6

Cite this article as:
Carter, J. Synthese (2008) 163: 119. doi:10.1007/s11229-007-9169-6


This paper compares the statement ‘Mathematics is the study of structure’ with the actual practice of mathematics. We present two examples from contemporary mathematical practice where the notion of structure plays different roles. In the first case a structure is defined over a certain set. It is argued firstly that this set may not be regarded as a structure and secondly that what is important to mathematical practice is the relation that exists between the structure and the set. In the second case, from algebraic topology, one point is that an object can be a place in different structures. Which structure one chooses to place the object in depends on what one wishes to do with it. Overall the paper argues that mathematics certainly deals with structures, but that structures may not be all there is to mathematics.


Philosophy of mathematicsStructuralismMathematical practice

Copyright information

© Springer Science+Business Media B.V. 2007