, Volume 147, Issue 1, pp 3–19

Amending Frege’s Grundgesetze der Arithmetik


DOI: 10.1007/s11229-004-6204-8

Cite this article as:
Ferreira, F. Synthese (2005) 147: 3. doi:10.1007/s11229-004-6204-8


Frege’s Grundgesetze der Arithmetik is formally inconsistent. This system is, except for minor differences, second-order logic together with an abstraction operator governed by Frege’s Axiom V. A few years ago, Richard Heck showed that the ramified predicative second-order fragment of the Grundgesetze is consistent. In this paper, we show that the above fragment augmented with the axiom of reducibility for concepts true of only finitely many individuals is still consistent, and that elementary Peano arithmetic (and more) is interpretable in this extended system.


Predicative definitions finite reducibility Frege logicism. 

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade de LisboaLisboaPortugal

Personalised recommendations