Skip to main content

Advertisement

Log in

Exploring the performance–power–energy balance of low-power multicore and manycore architectures for anomaly detection in remote sensing

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper, we perform an experimental study of the interactions between execution time (i.e., performance), power, and energy that occur in modern low-power architectures when executing the RX algorithm for detecting anomalies in hyperspectral images (i.e., signatures which are spectrally different from their surrounding data). We believe this is important because, for airborne and spaceborne remote sensing missions, power and/or energy can be in practice as relevant as performance. In this sense, this paper investigates whether several recent low-power multithreaded architectures, from ARM and NVIDIA, can be a practical alternative in this domain to a standard high-performance multicore processor, using the RX anomaly detector as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A spectral signature, or fingerprint, is the specific combination of emitted, reflected or absorbed electromagnetic radiation at varying wavelengths which can be leveraged to uniquely identify an object.

  2. http://www.netlib.org/lapack.

  3. http://code.google.com/p/blis/.

  4. http://math-atlas.sourceforge.net/.

References

  1. Bernabe S, López S, Plaza A, Sarmiento R, García Rodríguez P (2011) FPGA design of an automatic target generation process for hyperspectral image analysis. In: IEEE 17th international conference on parallel and distributed systems, ICPADS 2011, December 7–9, Tainan, pp 1010–1015

  2. Bioucas-Dias J, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):354–379

    Article  Google Scholar 

  3. Borghys D, Kasen I, Achard V, Perneel Ch (2012) Comparative evaluation of hyperspectral anomaly detectors in different types of background. In: Proc. SPIE, pp 83902J–83902J-12

  4. Castillo MI, Fernández JC, Igual FD, Plaza A, Quintana-Ortí ES, Remon A (2014) Hyperspectral unmixing on multicore DSPs: trading off performance for energy. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2297–2304

  5. Chang C-I (2003) Hyperspectral imaging: techniques for spectral detection and classification. Kluwer Academic, Plenum Publishers, New York

    Book  Google Scholar 

  6. Chang C-I (2013) Hyperspectral data processing: algorithm design and analysis. Wiley, New Jersey

    Book  Google Scholar 

  7. Chang C-I, Chiang S-S (2002) Anomaly detection and classification for hyperspectral imagery. IEEE Trans Geosci Remote Sens 40(6):1314–1325

    Article  Google Scholar 

  8. Dongarra JJ, Du Croz J, Hammarling S, Duff I (1990) A set of level 3 basic linear algebra subprograms. ACM Trans Math Softw 16(1):1–17

    Article  MATH  Google Scholar 

  9. Dongarra JJ, Duff IS, Sorensen DC, Der Vorst HV (1990) Solving linear systems on vector and shared memory computers. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    MATH  Google Scholar 

  10. Du B, Zhang L (2011) Random selection based anomaly detector for hyperspectral imagery. IEEE Trans Geosci Remote Sens 49(5):1578–1589

    Article  Google Scholar 

  11. Goetz AFH, Vane G, Solomon JE, Rock BN (1985) Imaging spectrometry for earth remote sensing. Science 228:1147–1153

    Article  Google Scholar 

  12. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore, Maryland

  13. González C, Sánchez S, Paz A, Resano J, Mozos D, Plaza A (2013) Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing. Integration 46(2):89–103

    Google Scholar 

  14. Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M et al (1998) Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ 65(3):227–248

    Article  Google Scholar 

  15. Hsueh M, Chang C (2008) Field programmable gate arrays (FPGA) for pixel purity index using blocks of skewers for endmember extraction in hyperspectral imagery. Int J High Perform Comput Appl 22(4):408–423

    Article  Google Scholar 

  16. Intel (2012) Intel math kernel library–documentation. Retrieved from https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation

  17. Marqués M, Quintana-Ortí G, Quintana-Ortí ES, van de Geijn R (2011) Using desktop computers to solve large-scale dense linear algebra problems. J Supercomput 58:145–150

    Article  Google Scholar 

  18. Matteoli S, Diani M, Corsini G (2010) A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp Electron Syst Mag 25(7):5–28

    Article  Google Scholar 

  19. Molero JM, Garzón EM, García I, Plaza A (2012) Anomaly detection based on a parallel kernel RX algorithm for multicore platforms. J Appl Remote Sens 6(1):11. doi:10.1117/1.JRS.6.061503

  20. Molero JM, Garzón EM, García I, Plaza A (2013) Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data. IEEE J Sel Top Appl Earth Obs Remote Sens 6(2):801–814

    Article  Google Scholar 

  21. Molero JM, Garzón EM, García I, Quintana-Ortí ES, Plaza A (2014) Efficient implementation of hyperspectral anomaly detection techniques on GPUs and multicore processors. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2256–2266

    Article  Google Scholar 

  22. Molero JM, Paz A, Garzón EM, Martínez JA, Plaza A, García I (2011) Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters. J Supercomput 58(3):411–419. doi:10.1007/s11227-011-0598-0

    Article  Google Scholar 

  23. Nvidia (2014) CUBLAS library. User guide. Retrieved from http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf

  24. Paz A, Plaza A, Plaza J (2009) Comparative analysis of different implementations of a parallel algorithm for automatic target detection and classification of hyperspectral images. In: Proc. SPIE, vol 7455, pp 74550X–74550X-11

  25. Plaza A, Chang C-I (2008) Preface to the special issue on high performance computing for hyperspectral imaging. Int J High Perform Comput Appl 22(4):363–365

    Article  Google Scholar 

  26. Reed IS, Yu X (1990) Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution. IEEE Trans Acoust Speech Signal Process 38:1760–1770

    Article  Google Scholar 

  27. Remón A, Sánchez S, Bernabé S, Quintana-Ortí ES, Plaza A (2013) Performance versus energy consumption of hyperspectral unmixing algorithms on multi-core platforms. EURASIP J Adv Signal Process 2013:68

    Article  Google Scholar 

  28. Sánchez S, León G, Plaza A, Quintana-Ortí ES (2014) Assessing the performance–energy balance of graphics processors for spectral unmixing. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2305–2316

  29. Shaw G, Manolakis D (2002) Signal processing for hyperspectral image exploitation. IEEE Signal Process Mag 19:12–16

    Article  Google Scholar 

  30. Stein DWJ, Beaven SG, Hoff LE, Winter EM, Schaum AP, Stocker AD (2002) Anomaly detection from hyperspectral imagery. IEEE Signal Process Mag 19:58–69

    Article  Google Scholar 

Download references

Acknowledgments

We thank Francisco D. Igual, from Universidad Complutense de Madrid (Spain), for his help with the optimization and installation of BLAS for several of the platforms considered in this work. Last but not least, we gratefully thank the Associate Editor and the Anonymous Reviewers for their detailed comments and suggestions, which greatly helped us to improve the technical quality and presentation of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Garzón.

Additional information

This work has been funded by Grants from the Spanish Ministry of Science and Innovation (TIN2008-01117, TIN2011-23283, TIN2012-37483-C03-01/03 and AYA2011-29334-C02-02), Junta de Andalucia (P10-TIC-6002, P11-TIC7176, P12-TIC-301) and Junta de Extremadura (PRI09A110 and GR10035) in part financed by the European Regional Development Fund (ERDF). Moreover, this work has been developed in the framework of the network High Performance Computing on Heterogeneous Parallel Architectures (CAPAP-H4), supported by the Spanish Ministry of Science and Innovation (TIN2011-15734-E).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León, G., Molero, J.M., Garzón, E.M. et al. Exploring the performance–power–energy balance of low-power multicore and manycore architectures for anomaly detection in remote sensing. J Supercomput 71, 1893–1906 (2015). https://doi.org/10.1007/s11227-014-1372-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-014-1372-x

Keywords

Navigation