Studia Logica

, Volume 98, Issue 1, pp 237–250

On Endomorphisms of Ockham Algebras with Pseudocomplementation

Article

DOI: 10.1007/s11225-011-9327-1

Cite this article as:
Blyth, T.S. & Fang, J. Stud Logica (2011) 98: 237. doi:10.1007/s11225-011-9327-1
  • 59 Downloads

Abstract

A pO-algebra \({(L; f, \, ^{\star})}\) is an algebra in which (L; f) is an Ockham algebra, \({(L; \, ^{\star})}\) is a p-algebra, and the unary operations f and \({^{\star}}\) commute. Here we consider the endomorphism monoid of such an algebra. If \({(L; f, \, ^{\star})}\) is a subdirectly irreducible pK1,1- algebra then every endomorphism \({\vartheta}\) is a monomorphism or \({\vartheta^3 = \vartheta}\) . When L is finite the endomorphism monoid of L is regular, and we determine precisely when it is a Clifford monoid.

Keywords

Ockham algebrapseudocomplementationendomorphism

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of St AndrewsSt AndrewsScotland
  2. 2.School of Computer ScienceGuangdong Polytechnic Normal UniversityGuangdongP.R. China