Studia Logica

, Volume 98, Issue 1, pp 141–147

Boolean Skeletons of MV-algebras and -groups

Authors

    • Departamento de Matemtica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires
Article

DOI: 10.1007/s11225-011-9325-3

Cite this article as:
Cignoli, R. Stud Logica (2011) 98: 141. doi:10.1007/s11225-011-9325-3
  • 70 Views

Abstract

Let Γ be Mundici’s functor from the category \({\mathcal{LG}}\) whose objects are the lattice-ordered abelian groups (-groups for short) with a distinguished strong order unit and the morphisms are the unital homomorphisms, onto the category \({\mathcal{MV}}\) of MV-algebras and homomorphisms. It is shown that for each strong order unit u of an -group G, the Boolean skeleton of the MV-algebra Γ(G, u) is isomorphic to the Boolean algebra of factor congruences of G.

Keywords

MV-algebraslattice-ordered abelian groups-idealsdirect decompositionsBoolean products
Download to read the full article text

Copyright information

© Springer Science+Business Media B.V. 2011