1.

Comtet, L., *Advanced combinatorics. The art of finite and infinite expansions*. Revised and enlarged edition, Reidel, Dordrecht, 1974.

2.

Flajolet, P., and R. Sedgewick, *Analitic combinatorics: functional equations, rational and algebraic functions*, INRIA, Number 4103, 2001.

3.

Flajolet, P., Odlyzko, A.M.: ‘Singularity analysis of generating functions’. SIAM J. on Discrete Math

**3**(2), 216–240 (1990)

CrossRefGoogle Scholar4.

Gardy, D., *Random Boolean expressions*, Colloquium on Computational Logic and Applications‘, Chambery (France), June 2005. Proceedings in DMTCS, 2006, pp. 1–26.

5.

Joly, T.: ‘On the λ definability I, the Model Problem and Generalizations of the Matching Problem’. Fundamentae Informaticae

**65**(1-2), 135–151 (2005)

Google Scholar6.

Kostrzycka, Z., ‘On the density of implicational parts of intuitionistic and classical logics’, *Journal of Applied Non-Classical Logics* Vol. 13, Number 3:295–325, 2003.

7.

Kostrzycka, Z., ‘On the density of truth in Grzegorczyk’s modal logic’, *Bulletin of the Section of Logic*, Vol. 33, Number 2:107–120, June 2004.

8.

Kostrzycka, Z., ‘On the density of truth in modal logics’, *Colloquium on Mathematics and Computer Science*, Nancy (France), September 2006. Proceedings in DMTCS, 2006, pp. 161–170.

9.

Kostrzycka, Z., Zaionc, M.: Statistics of intuitionistic versus classical logics’. Studia Logica

**76**, 307–328 (2004)

CrossRefGoogle Scholar10.

Loader, R., ‘The Undecidability of λ - Definability’, in C.A. Anderson and Zeleny (eds.), *Logic, Meaning and Computation: Essays in Memory of Alonzo Church*, Kluwer Academic Publishers, 2001, pp. 331–342.

11.

Moczurad, M., Tyszkiewicz, J., Zaionc, M.: ‘Statistical properties of simple types’. Mathematical Structures in Computer Science

**10**, 575–594 (2000)

CrossRefGoogle Scholar12.

Plotkin, G., λ *definability and logical relations*, Memorandum SAI-RM-4, School of Artificial Intelligence, University of Edinburgh, October 1973.

13.

Statman, R., Equality of functionals revisited, in L.A. Harrington et al. (eds.), Harvey Friedman’s Research on the Foundations of Mathematics, North- Holland, Amsterdam, 1985, pp. 331–338.

Google Scholar14.

Wilf, H.S.: Generatingfunctionology. 2nd edn. Academic Press, Boston (1994)

Google Scholar15.

Zaionc, M., ‘On the asymptotic density of tautologies in logic of implication and negation’, *Reports on Mathematical Logic*, vol. 39, 2004.

16.

Zaionc, M.: ‘Probabilistic approach to the lambda definability for fourth order types’. Electronic Notes in Theoretical Computer Science

**140**, 41–54 (2005)

CrossRefGoogle Scholar17.

Zaionc, M., ‘Probability distribution for simple tautologies’, *Theoretical Computer Science*, vol. 355, Issue 2, 11 April 2006, pp. 243–260.