[1]

AvRON, A., ‘The semantics and proof theory of linear logic’, Theoret. Comput. Sci. 57, 2–3 (1988), 161–184.

CrossRef[2]

BACSICH, P. D., ‘Injectivity in model theory’, Colloquium Mathematicum 25 (1972), 165–176.

[3]

BACSICH, P. D., ‘Amalgamation properties and interpolation theorems for equational theories’, Algebra Universalis 5 (1975), 45–55.

[4]

BAHLS, P., J. COLE, N. GALATOS, P. JIPSEN, and C. TSINAKIS, ‘Cancellative residu-ated lattices’, Algebra Universalis 50, 1 (2003), 83–106.

CrossRef[5]

BELARDINELLI, P., P. JIPSEN, and H. ONO, ‘Algebraic aspects of cut elimination’, Studio, Logica 77, 2 (2004), 209–240.

CrossRef[6]

BLOK, W. J., and B. JONSSON, ‘Algebraic structures for logic’, lecture series given at the symposium “Algebraic Structures for Logic”, New Mexico State University, Las Cruces, Jan. 8–12, 1999. Available on-line at

http://math.nmsu.edu/ holysymp/lectures.html[7]

BLOK, W. J., and B. JONSSON, ‘Equivalence of consequence operations’, Studia Logica 91–110 of this issue.

[8]

BLOK, W. J., and D. PlGOZZI, ‘Algebraizable logics’, Memoirs of the AMSv. 77, no. 396, 1989.

[9]

BLOK, W. J., and D. PIGOZZI, ‘Local deduction theorems in algebraic logic’, Algebraic logic (Budapest, 1988), 75–109, Colloq. Math. Soc. Jdnos Bolyai, 54, North-Holland, Amsterdam, 1991.

[10]

BLOK, W. J., and C. J. VAN ALTEN, ‘The finite embeddability property for residuated lattices, pocrims and BCK-algebras’, Algebra Universalis 48, 3 (2002), 253–271.

CrossRef[11]

BLOK, W. J., and C. J. VAN ALTEN, ‘On the finite embeddability property for residuated ordered groupoids’, Trans. Amer. Math. Soc., to appear.

[12]

BURRIS, S., and H. P. SANKAPPANAVAR, A Course in Univeral Algebra, Graduate Texts in Mathematics, v. 78, Springer-Verlag, 1981.

[13]

BLOUNT, K., and C. TsiNAKIS, ‘The structure of residuated lattices’, Internal. J. Algebra Comput. 13, 4 (2003), 437–461.

CrossRef[14]

CIGNOLI, R., I. D'OTTAVIANO, and D. MUNDICI, ‘Algebraic foundations of many-valued reasoning’, Trends in Logic - Studio, Logica Library 7. Kluwer Academic Publishers, Dordrecht, 2000.

[15]

CZELAKOWSKI, J., ‘Protoalgebraic logics’, Trends in Logic - Studia Logica Library 10. Kluwer Academic Publishers, Dordrecht, 2001.

[16]

CZELAKOWSKI, J., and W. DZIOBIAK, ‘A deduction theorem schema for deductive systems of propositional logics’, Studia Logica 50 (1991), 385–390.

CrossRef[17]

CZELAKOWSKI J., and D. PIGOZZI, ‘Amalgamation and interpolation in abstract algebraic logic’, Models, algebras, and proofs (Bogota, 1995), 187–265, Lecture Notes in Pure and Appl. Math., 203, Dekker, New York, 1999.

[18]

FONT, J.M., R. JANSANA, and D. PiGOZZI, ‘A survey of abstract algebraic logic’, Abstract algebraic logic, Part II (Barcelona, 1997), Studia Logica 74, 1–2 (2003), 13–97.

CrossRef[19]

GALATOS, N., ‘Varieties of residuated lattices’, Ph.D. thesis, Vanderbilt University, 2003.

[20]

GALATOS, N., ‘Equational bases for joins of residuated-lattice varieties’, Studia Logica 76, 2 (2004), 227–240.

CrossRef[21]

GALATOS, N., ‘Minimal varieties of residuated lattices’, Algebra Universalis 52, 2 (2005), 215–239.

CrossRef[22]

GALATOS, N., and H. ONO, ‘Glivenko theorems and other translations for substruc-tural logics over FL’, manuscript.

[23]

GALATOS, N., and H. ONO, ‘Cut elimination and strong separation for non-associative substructural logics’, manuscript.

[24]

GALATOS, N., and J. RAFTERY, ‘Adding involution to residuated structures’, Studia Logica 77, 2 (2004), 181–207.

CrossRef[25]

GALATOS, N., and C. TsiNAKIS, ‘Generalized MV-algebras’, Journal of Algebra 283, 1 (2005), 254–291.

CrossRef[26]

GALATOS, N., and C. TsiNAKIS, ‘Equivalence of consequence relations: An order-theoretic and categorical perspective’, in preparation.

[27]

HAJEK, P., Metamathematics of fuzzy logic, Trends in Logic - Studia Logica Library 4. Kluwer Academic Publishers, Dordrecht, 1998.

[28]

HART J.B., L. RAFTER, and C. TSINAKIS, ‘The structure of commutative residuated lattices’, Internat. J. Algebra Comput. 12, 4 (2002), 509–524.

CrossRef[29]

JIPSEN, P., and C. TSINAKIS, ‘A survey of residuated lattices’, in J. Martinez (ed.), Ordered Algebraic Structures, Kluwer Academic Publish., Dordrecht, 2002, pp. 19–56.

[30]

JONSSON, B., ‘Extentions of relational structures’, The theory of models. Proceedings of the 1963 Symposium at Berkeley, North-Holland, Amsterdam, 1965.

[31]

KOWALSKI, T., and H. ONO, ‘Residuated lattices: an algebraic glimpse at logics without contraction’, monograph, March, 2002.

[32]

MADARASZ, J., ‘Interpolation and amalgamation; Pushing the limits. Part I’, Studio, Logica (1998), 311–345.

[33]

MAKSIMOVA, L. L., ‘Interpolation properties of superintuitionistic logics’, Studio, Logical, 4 (1979), 419–428.

CrossRef[34]

MUNDICI, D., ‘Bounded commutative BCK-algebras have the amalgamation property’, Mathematical, Japonica 32 (1987), 279–282.

[35]

ONO, H., and M. KOMORI, ‘Logics without the contraction rule’, J. Symbolic Logic 50 (1985), 169–201.

CrossRef[36]

ONO, H., ‘Interpolation and the Robinson property for logics not closed under the Boolean operations’, Algebra Universalis 23 (1986), 111–122.

CrossRef[37]

ONO, H., ‘Structural rules and a logical hierarchy’, Mathematical logic, Plenum, New York, 1990, pp. 95–104.

[38]

ONO, H., ‘Semantics for substructural logics’, Substructural logics (Tubingen, 1990), 259–291, Stud. Logic Comput. 2, Oxford Univ. Press, New York, 1993.

[39]

ONO, H., ‘Proof-theoretic methods in nonclassical logic - an introduction’, Theories of types and proofs (Tokyo, 1997), 207–254, MS J Mem. 2, Math. Soc. Japan, Tokyo, 1998.

[40]

ONO, H., ‘Decidability and finite model property of substructural logics’, The Tbilisi Symposium on Logic, Language and Computation: selected papers, J. Ginzburg et al (eds.), pp. 263–274, Stud. Logic Lang. Inform., CSLI Publications, Stanford, CA, 1998.

[41]

ONO, H., ‘Substructural logics and residuated lattices - an introduction’, in V.F. Hendricks and J. Malinowski (eds.), Trends in Logic 20, 50 Years of Studia Logic, Kluwer Academic Publishers, 2003, pp. 177–212.

[42]

OKADA, M., and K. TERUI, ‘The finite model property for various fragments of intu-itionistic linear logic’, J. Symbolic Logic 64, 2 (1999), 790–802.

CrossRef[43]

PAOLI, P., Substructural logics: a primer, Trends in Logic - Studia Logica Library 13. Kluwer Academic Publishers, Dordrecht, 2002.

[44]

RESTALL, G., An introduction to substructural logics, R.outledge, 2000.

[45]

VAN ALTEN, C. J., ‘R.epresentable biresiduated lattices’, J. Algebra 247, 2 (2002), 672–691.

[46]

VAN ALTEN, C. J., and J. RAFTERY, ‘Rule separation and embedding theorems for logics without weakening’, Studia Logica 76, 2 (2004), 241–274.

CrossRef[47]

WARD, M., and R. P. DILWORTH, ‘Residuated lattices’, Trans. Amer. Math. Soc. 45 (1939), 335–354.

CrossRef[48]

WRONSKI, A., ‘On a form of equational interpolation property’, Foundations of logic and linguistics (Salzburg, 1983), 23–29, Plenum, New York, 1985.