Skip to main content
Log in

Multinuclear NMR spectra and GIAO/DFT calculations of N-benzylazoles and N-benzylbenzazoles

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The 1H, 13C, and 15N chemical shifts of almost the whole series of N-benzyl azoles and benzazoles, with the exception of the unknown 1-benzyl-1H-pentazole (10) and the very unstable 2-benzyl-2H-isoindole (12), have been measured. In addition, the X-ray crystal structure of 1-benzyl-1H-indazole (14) was solved (monoclinic, space group P21/n), its geometry being very close to that used for the calculations. The absolute chemical shieldings were calculated at the gauge-independent atomic orbital (GIAO)/Becke, 3-parameter, Lee-Yang-Parr (B3LYP)/6-311++G(d,p) level and then transformed with very robust empirical equations into chemical shifts of the three nuclei showing an excellent agreement with the 313 experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Comprehensive Heterocyclic Chemistry, three editions (I, II, III), Elsevier, Oxford, 1984, 1996, 2008

  2. Katritzky AR, Lan X, Yang JZ, Denisko OV (1998). Chem Rev 98:409–548

    Article  CAS  PubMed  Google Scholar 

  3. Doiron J, Soultan AH, Richard R, Touré MM, Picot N, Richard R, Cuperlovic-Culf M, Robichaud GA, Touaibia M (2011). Eur J Med Chem 46:4010–4024

    Article  CAS  PubMed  Google Scholar 

  4. Begtrup M, Larson P (1990). Acta Chem Scand 44:1050–1057

    Article  CAS  Google Scholar 

  5. Jones RG (1949). J Am Chem Soc 71:3994–4000

    Article  CAS  Google Scholar 

  6. Jones RG, Ainsworth C (1954). J Am Chem Soc 77:1538–1540

    Article  Google Scholar 

  7. Bulger PG, Cottrell IF, Cowden CJ, Davies AJ, Dolling UH (2000). Tetrahedron Lett 41:1297–1301

    Article  CAS  Google Scholar 

  8. Ottoni O, Cruz R, Alves R (1998). Tetrahedron 54:13915–13928

    Article  CAS  Google Scholar 

  9. Milen M, Grün A, Balint E, Dancso A, Keglevich G (2010). Synth Commun 40:2291–2301

    Article  CAS  Google Scholar 

  10. Chen Q, Mao Z, Guo F, Liu X (2016). Tetrahedron Lett 57:3735–3738

    Article  CAS  Google Scholar 

  11. Abenhaim D, Diez-Barra E, de la Hoz A, Loupy A, Sánchez-Migallón A (1994). Heterocycles 38:793–802

    Article  CAS  Google Scholar 

  12. Nishi H, Kohno H, Kano T (1981). Bull Chem Soc Jpn 54:1897–1898

    Article  CAS  Google Scholar 

  13. Sheldrick GM (2008). Acta Crystallogr A 64:112–122

    Article  CAS  PubMed  Google Scholar 

  14. Sheldrick GM (2015). Acta Crystallogr C 71:3–8

    Article  CAS  Google Scholar 

  15. Dolomanov OV, Bourhis LJ, Gildea RJ, JAK H, Puschmann H (2009). J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  16. Becke AD (1988). Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  17. Becke AD (1993). J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  18. Ditchfield R, Hehre WJ, Pople JA (1971). J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  19. Frisch MJ, Pople JA, Binkley JS (1984). J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  20. Sanz D, Claramunt RM, Roussel C, Alkorta I, Elguero J (2018). Indian J Heterocycl Chem 28:1–10

    CAS  Google Scholar 

  21. London F (1937). J Phys Radium 8:397–409

    Article  CAS  Google Scholar 

  22. Ditchfield R (1974). Mol Phys 27:789–807

    Article  CAS  Google Scholar 

  23. Gaussian 09 (2009) Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr., JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CT

  24. AMS S, RMS S, Jimeno ML, Blanco F, Alkorta I, Elguero J (2008). Magn Reson Chem 46:859–864

    Article  CAS  Google Scholar 

  25. Blanco F, Alkorta I, Elguero J (2007). Magn Reson Chem 45:797–800

    Article  CAS  PubMed  Google Scholar 

  26. Groom CR, Bruno IJ, Lightfoot MP, Ward SC, The Cambridge Structural Database (2016) The Cambridge structural database. Acta Crystallogr Sect B 72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  27. Joyce SA, Yates JR, Pickard CJ, Mauri F (2007). J Chem Phys 127:204107

    Article  CAS  PubMed  Google Scholar 

  28. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005). Z Kristallogr 220:567–570

    CAS  Google Scholar 

  29. Marín-Luna M, Claramunt RM, Nieto CI, Alkorta I, Elguero J, Reviriego F (2019). A theoretical NMR study of polymorphism in crystal structures of azoles and benzazoles. Magn Reson Chem. https://doi.org/10.1002/mrc.4824

  30. Butler RN, Stephens JC, Burke LA (2003). Chem Commun:1016–1017

  31. Butler RN, Hanniffy JM, Stephens JC, Burke LA (2008). J Organomet Chem 73:1354–1364

    Article  CAS  Google Scholar 

  32. Huang H, Zhong J, Ma L, Lv L, Francisco JS, Zeng XC (2019). J Am Chem Soc 141:2984–2989. https://doi.org/10.1021/jacs.8b11335

  33. Carpino LA, Padykula RE, Barr DE, Hall FH, Krause JG, Dufresne RF, Thoman CJ (1988). J Organomet Chem 53:2565–2572

    Article  CAS  Google Scholar 

  34. Hansch C, Leo A (1995) Exploring QSAR: Fundamentals and Applications in Chemistry and Biology. American Chemical Society, Whashington, DC

  35. Alkorta I, Elguero J (2018). Chem Phys Lett 691:33–36

    Article  CAS  Google Scholar 

  36. Elguero J, Marzin C, Tizané D (1969). Org Magn Reson 1:249–275

    Article  CAS  Google Scholar 

  37. Hung TQ, Dang TT, Janke J, Villinger A, Langer P (2015). Org Biomol Chem (13):1375–1386

Download references

Funding

This work was carried out with financial support from the Spanish Ministerio de Ciencia, Innovación y Universidades (Projects PGC2018-094644-B-C2 and RTI2018-097416-B-C21) and Dirección General de Investigación e Innovación de la Comunidad de Madrid (PS2018/EMT-4329 AIRTEC-CM). Thanks are also given to the CTI (CSIC) for their continued computational support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosa M. Claramunt or Ibon Alkorta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzer, W., Castoldi, L., Kyselova, V. et al. Multinuclear NMR spectra and GIAO/DFT calculations of N-benzylazoles and N-benzylbenzazoles. Struct Chem 30, 1729–1735 (2019). https://doi.org/10.1007/s11224-019-01310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01310-3

Keywords

Navigation