Skip to main content
Log in

The importance of molecular conformation to the properties: a DFT study of the polynitro heterocyclic compounds based on dodecahydrodiimidazo [4,5-b:4′,5′-e]pyrazine structure

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Two series of polynitro heterocyclic compounds with three conformations are designed based on the obtained dodecahydrodiimidazo [4,5-b:4′,5′-e]pyrazine “565” structure. First, the conformations including boat, chair, and plane, are optimized at B3PW91/6-311+G(d,p) level and some important properties are calculated. Based on the bond order, bond dissociation enthalpies and molecular energy analysis, it is found that the boat conformation owns lower energy and better bond order than the other two, and thus is most stable. Then, a further study on the electrical potential surfaces (EPS) proves that the stability of boat conformation can be contributed to the better balance between the positive and negative EPS. Next, according to molecular energy gap and density of state, the effect of each group on molecule is investigated: electrons on nitro group, compared with those on the framework, are easier to be activated so as to cause decomposition, thus nitro groups will determine the stability of molecule. Finally, the explosive velocity, pressure, and impact sensitivity of designed compounds are calculated. Results show that their explosive performances are significantly better than current energetic materials, and it is extraordinary enough that some compounds among them also maintain very good sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thottempudi V, Shreeve JM (2011) Synthesis and promising properties of a new family of high-density energetic salts of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and 5,5′-bis(trinitromethyl)-3,3′-azo-1H-1,2,4-triazole. J Am Chem Soc 133:19982–19992

    Article  CAS  Google Scholar 

  2. Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2012) Pushing the limits of energetic materials—the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Mater Chem 22:20418–20422

    Article  CAS  Google Scholar 

  3. Wang PC, Zhu Z, Xu J, Zhao X, Lu M (2013) Theoretical study of the thermodynamic and burning properties of oxygen-rich hydrazine derivatives-green and powerful oxidants for energetic materials. J Mol Model 19:2583–2591

    Article  CAS  Google Scholar 

  4. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  5. Zhao GZ, Lu M (2013) Comparative theoretical studies of energetic dodecahydrodiimidazo[4,5-b:4′,5′-e]pyrazine derivatives. Comput Theor Chem 1007:57–62

    Article  CAS  Google Scholar 

  6. Liu Y, Zhang L, Wang GX, Wang LJ, Gong XD (2012) First-principle studies on the pressure-induced structural changes in energetic ionic salt 3-azido-1,2,4-triazolium nitrate crystal. J Phys Chem C 116:16144–16153

    Article  CAS  Google Scholar 

  7. Tan B, Long X, Li J (2012) The cage strain energies of high-energy compounds. Comput Theor Chem 993:66–72

    Article  CAS  Google Scholar 

  8. Zhou H, Wong NB, Zhou G, Tian A (2006) Theoretical study on “multilayer” nitrogen cages. J Phys Chem A 110:3845–3852

    Article  CAS  Google Scholar 

  9. Sharma H, Garg I, Dharamvir K, Jindal VK (2010) Structure of polynitrogen clusters encapsulated in C60: a density functional study. J Phys Chem C 114:9153–9160

    Article  CAS  Google Scholar 

  10. Klapötke TM, Piercey DG, Stierstorfer J (2011) The Taming of CN7 : the Azidotetrazolate 2-Oxide Anion. Chem Eur J 17:13068–13077

    Article  Google Scholar 

  11. Gao H, Shreeve JM (2011) Azole-based energetic salts. Chem Rev 111:7377–7436

    Article  CAS  Google Scholar 

  12. Wang F, Wang GX, Du HC, Zhang JY, Gong XD (2011) Theoretical studies on the heats of formation, detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines. J Phys Chem A 115:13858–13864

    Article  CAS  Google Scholar 

  13. Klapotke TM, Piercey DG, Stierstorfer J (2012) Amination of energetic anions: high-performing energetic materials. Dalton Trans 41:9451–9459

    Article  Google Scholar 

  14. Srinivas D, Ghule VD, Muralidharan K (2014) Synthesis of nitrogen-rich imidazole, 1,2,4-triazole and tetrazole-based compounds. RSC Adv 4:7041–7051

    Article  CAS  Google Scholar 

  15. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propell Explos Pyrot 22:249–255

    Article  CAS  Google Scholar 

  16. Dong K, Wang Y, Gong XB, Zhang J, Sun CH, Pang SP (2013) Formyl azido substituted nitro hexaazaisowurtzitane—synthesis, characterization and energetic properties. New J Chem 37:3685–3691

    Article  CAS  Google Scholar 

  17. Wilcox CF, Zhang YX, Bauer SH (2000) The thermochemistry of TNAZ (1,3,3-trinitroazetidine) and related species: models for calculating heats of formation. J Mol Struct 528:95–109

    Article  CAS  Google Scholar 

  18. Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS (2006) Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-Based PBXs. J Phys Chem B 110:7203–7207

    Article  CAS  Google Scholar 

  19. Wu Q, Zhu W, Xiao H (2014) Computer-aided design of two novel and super-high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane. RSC Adv 4:3789–3797

    Article  CAS  Google Scholar 

  20. Bushuyev OS, Brown P, Maiti A, Gee RH, Peterson GR, Weeks BL, Hope-Weeks LJ (2011) Ionic polymers as a new structural motif for high-energy-density materials. J Am Chem Soc 134:1422–1425

    Article  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2003) Gaussian 03. Gaussian Inc., Pittsburgh

    Google Scholar 

  22. Becke AD (1992) Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  23. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  24. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  27. Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108:1391–1396

    Article  CAS  Google Scholar 

  28. Wiberg KB, Ochterski JW (1997) Comparison of different ab initio theoretical models for calculating isodesmic reaction energies for small ring and related compounds. J Comput Chem 18:108–114

    Article  CAS  Google Scholar 

  29. Wiberg KB, Rablen PR (1993) Comparison of atomic charges derived via different procedures. J Comput Chem 14:1504–1518

    Article  CAS  Google Scholar 

  30. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263

    Article  CAS  Google Scholar 

  31. Yao XQ, Hou XJ, Jiao H, Xiang HW, Li YW (2003) Accurate calculations of bond dissociation enthalpies with density functional methods. J Phys Chem A 107:9991–9996

    Article  CAS  Google Scholar 

  32. Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method. J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  33. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  34. Pospíšil M, Vávra P, Concha M, Murray J, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895–901

    Article  Google Scholar 

  35. Hammerl A, Klapötke TM, Nöth H, Warchhold M, Holl G (2003) Synthesis, structure, molecular orbital and valence bond calculations for tetrazole azide, CHN7. Propell Explos Pyrot 28:165–173

    Article  CAS  Google Scholar 

  36. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  37. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model 38:314–323

    Article  Google Scholar 

Download references

Acknowledgments

We thank National Natural Science Foundation of China (No: 51374131) for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q.H., Wang, P.C. & Lu, M. The importance of molecular conformation to the properties: a DFT study of the polynitro heterocyclic compounds based on dodecahydrodiimidazo [4,5-b:4′,5′-e]pyrazine structure. Struct Chem 26, 667–674 (2015). https://doi.org/10.1007/s11224-014-0524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0524-1

Keywords

Navigation