Skip to main content
Log in

Study of the An–Cl bond contraction in actinide trichlorides

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The variation of the An–Cl bond distance in ground-state actinide trichloride (AnCl3) molecules has been studied by density functional theory calculations using the B3LYP exchange–correlation functional in conjunction with small-core relativistic energy-consistent pseudopotentials for the actinides. The ground electronic states and the ground-state molecular properties of the trichlorides of heavy actinides (An = Bk–Lr) are reported in this paper the first time. Extending the present results with literature data on the light actinide trichlorides (AnCl3, An = Th–Cm), the trend in the bond distance has been evaluated for the whole actinide row. The contraction is well manifested in the major part of the actinide row (An = U–Fm). The deviations at the beginning (Th, Pa) and end of the row (Md, No) have been explained by minor differences in the bonding interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shannon RD (1976) Acta Cryst. A32:751

    Article  CAS  Google Scholar 

  2. Edelstein NM, Fuger J, Katz JJ, Morss LR (2006) In: Edelstein NM, Fuger J, Morss LR (eds) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, p 1753

    Chapter  Google Scholar 

  3. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  4. Wang SG, Schwarz WHE (1995) J Phys Chem 99:11687

    Article  CAS  Google Scholar 

  5. Laerdahl JK, Fægri K, Visscher L, Saue T (1998) J Chem Phys 109:10806

    Article  CAS  Google Scholar 

  6. Hargittai M (2000) Chem Rev 100:2233

    Article  CAS  Google Scholar 

  7. Housecroft CE, Sharpe AG (2004) Inorganic chemistry. Prentice Hall, New Jersey

    Google Scholar 

  8. Pyykkö P (1988) Chem Rev 88:563

    Article  Google Scholar 

  9. Hargittai M (1988) Coord Chem Rev 91:35

    Article  CAS  Google Scholar 

  10. Kovács A, Konings RJM (2004) J Phys Chem Ref Data 33:377

    Article  CAS  Google Scholar 

  11. Pantazis DA, Neese F (2009) J Chem Theory Comput 5:2229

    Article  CAS  Google Scholar 

  12. Dolg M (2011) J Chem Theory Comput 7:3131

    Article  CAS  Google Scholar 

  13. Kovács A, Pogány P, Konings RJM (2012) Inorg Chem 51:4841

    Article  CAS  Google Scholar 

  14. Konings RJM, Beneš O, Kovács A, Manara D, Sedmidubský D, Gorokhov L, Iorish VS, Yungman V (2014) J Phys Chem Ref Data 43:013101

    Article  CAS  Google Scholar 

  15. Kovács A, Konings RJM, Varga Z, Szieberth D (2013) J Phys Chem A 117:11357

    Article  CAS  Google Scholar 

  16. Bazhanov VI, Ezhov YS, Komarov SA (1990) J Struct Chem 31:986

    Article  Google Scholar 

  17. Bazhanov VI, Ezhov YS, Komarov SA (1990) Zh Strukt Khim 31:152

    CAS  Google Scholar 

  18. Joubert L, Maldivi P (2001) J Phys Chem A 105:9068

    Article  CAS  Google Scholar 

  19. Batista ER, Martin RL, Hay PJ (2004) J Chem Phys 121:11104

    Article  CAS  Google Scholar 

  20. Vetere V, Roos BO, Maldivi P, Adamo C (2004) Chem Phys Lett 396:452

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  24. Küchle W, Dolg M, Stoll H, Preuss H (1994) J Chem Phys 100:7535

    Article  Google Scholar 

  25. Cao XY, Dolg M, Stoll H (2003) J Chem Phys 118:487

    Article  CAS  Google Scholar 

  26. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  27. Seeger R, Pople JA (1977) J Chem Phys 66:3045

    Article  CAS  Google Scholar 

  28. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  29. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  30. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2011) NBO 5.9, Theoretical Chemistry Institute, University of Wisconsin, Madison, US

  31. Keith TA (2013) AIMAll, Version 13.11.04, TK Gristmill Software, Overland Park KS, USA

  32. Blaise J, Wyart J-F (1992) Energy Levels and Atomic Spectra of Actinides, International Tables of Selected Constants. CNRS, Paris

    Google Scholar 

  33. Blaise J, Wyart J-F, Selected Constants, Energy Levels and Atomic Spectra of Actinides. http://web2.lac.u-psud.fr/lac/Database/Contents.html, Laboratoire Aimé Cotton, CNRS, Paris. Accessed 3 Mar 2014

  34. Balasubramanian K (2010) Mol Phys 107:797

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Hungarian Scientific Research Foundation (OTKA No. 75972) is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Kovács.

Electronic supplementary material

Selected properties of the excited states found in our test calculations switching occupied and virtual molecular orbitals.

Supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, A., Konings, R.J.M., Szieberth, D. et al. Study of the An–Cl bond contraction in actinide trichlorides. Struct Chem 25, 991–996 (2014). https://doi.org/10.1007/s11224-014-0406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0406-6

Keywords

Navigation