Skip to main content

Advertisement

Log in

Large-Scale Structure and Dynamics of the Magnetotails of Mercury, Earth, Jupiter and Saturn

Space Science Reviews Aims and scope Submit manuscript

Abstract

Spacecraft observations have established that all known planets with an internal magnetic field, as part of their interaction with the solar wind, possess well-developed magnetic tails, stretching vast distances on the nightside of the planets. In this review paper we focus on the magnetotails of Mercury, Earth, Jupiter and Saturn, four planets which possess well-developed tails and which have been visited by several spacecraft over the years. The fundamental physical processes of reconnection, convection, and charged particle acceleration are common to the magnetic tails of Mercury, Earth, Jupiter and Saturn. The great differences in solar wind conditions, planetary rotation rates, internal plasma sources, ionospheric properties, and physical dimensions from Mercury’s small magnetosphere to the giant magnetospheres of Jupiter and Saturn provide an outstanding opportunity to extend our understanding of the influence of such factors on basic processes. In this review article, we study the four planetary environments of Mercury, Earth, Jupiter and Saturn, comparing their common features and contrasting their unique dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • G.A. Abel, A.J. Coates, A.M. Rymer, D.R. Linder, M.F. Thomsen, D.T. Young, M.K. Dougherty, Cassini plasma spectrometer observations of bidirectional lobe electrons during the Earth flyby, August 18, 1999. J. Geophys. Res. 106, 30199–30208 (2001). doi:10.1029/2001JA900076

    ADS  Google Scholar 

  • N. Achilleos, C.S. Arridge, C. Bertucci, C.M. Jackman, M.K. Dougherty, K.K. Khurana, C.T. Russell, Large-scale dynamics of Saturn’s magnetopause: observations by Cassini. J. Geophys. Res. 113, A11209 (2008). doi:10.1029/2008JA013265

    ADS  Google Scholar 

  • S.-I. Akasofu, The development of the auroral substorm. Planet. Space Sci. 12, 273 (1964)

    ADS  Google Scholar 

  • S.-I. Akasofu, Polar and Magnetospheric Substorm (Reidel, Dordrecht, 1968)

    Google Scholar 

  • S. Akasofu, S. Chapman, The ring current, geomagnetic disturbance, and the Van Allen radiation belts. J. Geophys. Res. 66(5), 1321–1350 (1961). doi:10.1029/JZ066i005p01321

    MATH  ADS  Google Scholar 

  • R.R. Anderson, D.A. Gurnett, H. Matsumoto, K. Hashimoto, H. Kojima, Y. Kasaba, M.L. Kaiser, G. Rostoker, J.-L. Bougeret, J.-L. Steinberg, I. Nagano, H. Singer, Observations of low frequency terrestrial type III bursts by GEOTAIL and WIND and their association with isolated geomagnetic disturbances detected by ground and space-borne instruments, in Planetary Radio Emissions IV, ed. by H.O. Rucker, S.J. Bauer, A. Lecacheux (Austrian Academy of Sciences Press, Vienna, 1997), pp. 241–250

    Google Scholar 

  • B.J. Anderson, M.H. Acuna, H. Korth, M.E. Purucker, C.L. Johnson, J.A. Slavin, S.C. Solomon, R.L. McNutt Jr., The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321, 82–85 (2008)

    ADS  Google Scholar 

  • B.J. Anderson, C.L. Johnson, H. Korth, R.M. Winslow, J.E. Borovsky, M.E. Purucker, J.A. Slavin, S.C. Solomon, M.T. Zuber, R.L. McNutt Jr., Low-degree structure in Mercury’s planetary magnetic field. J. Geophys. Res. 117, E00L12 (2012). doi:10.1029/2012JE004159

    ADS  Google Scholar 

  • V. Angelopoulos, W. Baumjohann, C.F. Kennel, F.V. Coronti, M.G. Kivelson, R. Pellat, R.J. Walker, H. Luehr, G. Paschmann, Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 4027–4039 (1992a)

    ADS  Google Scholar 

  • V. Angelopoulos, C.F. Kennel, F.V. Coroniti, R. Pellat, M.G. Kivelson, R.J. Walker, W. Baumjohann, G. Paschmann, H. Luhr, Bursty bulk flows in the inner plasma sheet: an effective means of earthward transport in the magnetotail, in Proceedings of the First International Conf. on Substorms, ESA Special Publication, vol. 335 (1992b), pp. 303–308

    Google Scholar 

  • V. Angelopoulos, C.F. Kennel, F.V. Coroniti, W.C. Feldman, J.T. Gosling, M.G. Kivelson, R.J. Walker, C.T. Russell, Observations of a quasi-static plasma sheet boundary. Geophys. Res. Lett. 20, 2813–2816 (1993). doi:10.1029/93GL01979

    ADS  Google Scholar 

  • V. Angelopoulos, C.F. Kennel, F.V. Coroniti, R. Pellat, M.G. Kivelson, R.J. Walker, C.T. Russell, W. Baumjohann, W.C. Feldman, J.T. Gosling, Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99, 21257–21280 (1994). doi:10.1029/94JA01263

    ADS  Google Scholar 

  • V.C. Angelopoulos, J.P. McFadden, D. Larson et al., Tail reconnection triggering substorm onset. Science 321(5891), 931–935 (2008). doi:10.1126/science.1160495

    ADS  Google Scholar 

  • V.C. Angelopoulos, J.P. McFadden, D. Larson et al., Response to Comment on ”Tail reconnection triggering substorm onset”. Science 324(5933) (2009). doi:10.1126/science.1168045

  • R.L. Arnoldy, K.W. Chan, Particle substorms observed at the geostationary orbit. J. Geophys. Res. 74, 5019 (1969)

    ADS  Google Scholar 

  • C.S. Arridge, Magnetotails of Uranus and Neptune, in Magnetotails in the Solar System. Geophys. Monogr. Ser. (2014, in press)

  • C.S. Arridge, N. Achilleos, M.K. Dougherty, K.K. Khurana, C.T. Russell, Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. J. Geophys. Res. 111, A11227 (2006). doi:10.1029/2005JA011574

    ADS  Google Scholar 

  • C.S. Arridge, C.T. Russell, K.K. Khurana, N. Achilleos, S.W.H. Cowley, M.K. Dougherty, D.J. Southwood, E.J. Bunce, Saturn’s magnetodisc current sheet. J. Geophys. Res. 113, A04214 (2008a). doi:10.1029/2007JA012540

    ADS  Google Scholar 

  • C.S. Arridge, K.K. Khurana, C.T. Russell, D.J. Southwood, N. Achilleos, M.K. Dougherty, A.J. Coates, H.K. Leinweber, Warping of Saturn’s magnetospheric and magnetotail current sheets. J. Geophys. Res. 113, A08217 (2008b). doi:10.1029/2007JA012963

    ADS  Google Scholar 

  • C.S. Arridge, H.J. McAndrews, C.M. Jackman, C. Forsyth, A.P. Walsh, E.C. Sittler, L.K. Gilbert, G.R. Lewis, C.T. Russell, A.J. Coates, M.K. Dougherty, G.A. Collinson, A. Wellbrock, D.T. Young, Plasma electrons in Saturn’s magnetotail: structure, distribution and energization. Planet. Space Sci. 57(14–15), 2032–2047 (2009)

    ADS  Google Scholar 

  • C.S. Arridge et al., Periodic motion of Saturn’s nightside plasma sheet. J. Geophys. Res. 116, A11205 (2011a). doi:10.1029/2011JA016827

    ADS  Google Scholar 

  • C.S. Arridge et al., Mapping magnetospheric equatorial regions at Saturn from Cassini Prime mission observations. Space Sci. Rev. 164, 1–83 (2011b). doi:10.1007/s11214-011-9850-4

    ADS  Google Scholar 

  • A. Artemyev, L. Zelenyi, Mechanisms of spontaneous reconnection: from magnetospheric to fusion plasma. Space Sci. Rev. (2013). doi:10.1007/s11214-013-9959-8

    Google Scholar 

  • A.V. Artemyev, W. Baumjohann, A.A. Petrukovich, R. Nakamura, I. Dandouras, A. Fazakerley, Proton/electron temperature ratio in the magnetotail. Ann. Geophys. 29(12), 2253–2257 (2011). doi:10.5194/angeo-29-2253-2011

    ADS  Google Scholar 

  • Y. Asano, T. Mukai, M. Hoshino, Y. Saito, H. Haysakawa, T. Nagai, Statistical study of thin current sheet evolution around substorm onset. J. Geophys. Res. 109, A05213 (2004). doi:10.1029/2004JA010413

    ADS  Google Scholar 

  • Y. Asano, R. Nakamura, W. Baumjohann, A. Runov, Z. Vörös, M. Volwerk, T.L. Zhang, A. Balogh, B. Klecker, H. Rème, How typical are atypical current sheets? Geophys. Res. Lett. 32, L03108 (2005). doi:10.1029/2004GL021834

    ADS  Google Scholar 

  • M. Ashour-Abdalla, J.P. Berchem, J. Buechner, L.M. Zelenyi, Shaping of the magnetotail from the mantle—global and local structuring. J. Geophys. Res. 98, 5651–5676 (1993). doi:10.1029/92JA01662

    ADS  Google Scholar 

  • M. Ashour-Abdalla, M. El-Alaoui, M.L. Goldstein, M. Zhou, D. Schriver, R. Richard, R. Walker, M.G. Kivelson, K.-J. Hwang, Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nat. Phys. 7, 360–365 (2011). doi:10.1038/nphys1903

    Google Scholar 

  • A. Åsnes, R.W.H. Friedel, B. Lavraud, G.D. Reeves, M.G.G.T. Taylor, P. Daly, Statistical properties of tail plasma sheet electrons above 40 keV. J. Geophys. Res. 113(A12), A03202 (2008). doi:10.1029/2007JA012502

    ADS  Google Scholar 

  • M.P. Aubry, C.T. Russell, M.G. Kivelson, Inward motion of the magnetopause before a substorm. J. Geophys. Res. 75, 7018 (1970)

    ADS  Google Scholar 

  • W.I. Axford, C.O. Hines, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433–1464 (1961)

    MathSciNet  ADS  Google Scholar 

  • W.I. Axford, Viscous interaction between the solar wind and the Earth’s magnetosphere. Planet. Space Sci. 12, 45–53 (1964)

    ADS  Google Scholar 

  • W.I. Axford, H.E. Petschek, G.L. Siscoe, Tail of the magnetosphere. J. Geophys. Res. 70(5), 1231–1236 (1965). doi:10.1029/JZ070i005p01231

    MATH  ADS  Google Scholar 

  • S.V. Badman, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, S.E. Milan, Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res. 110, A11216 (2005). doi:10.1029/2005JA011240

    ADS  Google Scholar 

  • S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007)

    ADS  Google Scholar 

  • S.V. Badman, S.W.H. Cowley, L. Lamy, B. Cecconi, P. Zarka, Relationship between solar wind corotating interaction regions and the phasing and intensity of Saturn kilometric radiation bursts. Ann. Geophys. 26, 3641–3651 (2008)

    ADS  Google Scholar 

  • S.V. Badman, C.M. Jackman, J.D. Nichols, J.T. Clarke, J.-C. Gérard, Open flux in Saturn’s magnetosphere. Icarus 231, 137–145 (2014). doi:10.1016/j.icarus.2013.12.004

    ADS  Google Scholar 

  • F. Bagenal, Giant planet magnetospheres. Annu. Rev. Earth Planet. Sci. 20, 289–328 (1992). doi:10.1146/annurev.ea.20.050192.001445

    ADS  Google Scholar 

  • F. Bagenal, T. Dowling, W. McKinnon (eds.), Jupiter: Planet, Satellites, Magnetosphere (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • F. Bagenal, The magnetosphere of Jupiter: coupling the equator to the poles. J. Atmos. Sol.-Terr. Phys. 69 (2007)

  • F. Bagenal, Comparative planetary environments, in Heliophysics: Plasma Physics of the Local Cosmos, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2009), pp. 360–398

    Google Scholar 

  • F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, A05209 (2011). doi:10.1029/2010JA016294

    ADS  Google Scholar 

  • D.N. Baker, P.R. Higbie, E.W. Hones Jr., R.D. Belian, High-resolution energetic particle measurements at 6.6 R E : 3. Low-energy electron anisotropies and short-term substorm predictions. J. Geophys. Res. 83, 4863 (1978)

    ADS  Google Scholar 

  • D.N. Baker, J.E. Borovsky, J.O. Burns, G.R. Gisler, M. Zeilik, Possible calorimetric effects at Mercury due to solar wind-magnetosphere interactions. J. Geophys. Res. 92(A5), 4707–4712 (1987). doi:10.1029/JA092iA05p04707

    ADS  Google Scholar 

  • D.N. Baker, T.I. Pulkkinen, V. Angelopoulos, W. Baumjohann, R.L. McPherron, Neutral line model of substorms: past results and present view. J. Geophys. Res. 101, 12975–13010 (1996). doi:10.1029/95JA03753

    ADS  Google Scholar 

  • W. Baumjohann, G. Paschmann, C.A. Cattell, Average plasma properties in the central plasma sheet. J. Geophys. Res. 94, 6597–6606 (1989). doi:10.1029/JA094iA06p06597

    ADS  Google Scholar 

  • W. Baumjohann, M. Hesse, S. Kokubun, T. Mukai, T. Nagai, A.A. Petrukovich, Substorm dipolarization and recovery. J. Geophys. Res. 104(A11), 24995–25000 (1999). doi:10.1029/1999JA900282

    ADS  Google Scholar 

  • W. Baumjohann, A. Roux, O. Le Contel, R. Nakamura, J. Birn et al., Dynamics of thin current sheets: Cluster observations. Ann. Geophys. 25, 1365–1389 (2007)

    ADS  Google Scholar 

  • K.W. Behannon, Mapping of the Earth’s bow shock and magnetic tail by Explorer 33. J. Geophys. Res. 73 (1968). doi:10.1029/JA073i003p00907

  • K.W. Behannon, Heliocentric distance dependence of the interplanetary magnetic field. Rev. Geophys. Space Phys. 16, 126 (1978)

    ADS  Google Scholar 

  • K.W. Behannon, L.F. Burlaga, N.F. Ness, The Jovian magnetotail and its current sheet. J. Geophys. Res. 86, 8385–8401 (1981)

    ADS  Google Scholar 

  • E.A. Benediktov, G.G. Getmansev, N.A. Mityakov, V.O. Papoport, A.F. Tarozov, Relation between geomagnetic activity and the sporadic radio emission recorded by the Electron-2 satellite. Kosm. Issled. 6, 7 (1968) (in Russian)

    Google Scholar 

  • J. Benkhoff et al., Bepi-Colombo-Comprehensive exploration of Mercury: mission overview and science goals. Planet. Space Sci. 58(1–2) (2010)

  • M. Benna et al., Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus 209(1), 3–10 (2010). doi:10.1016/j.icarus.2009.11.036

    MathSciNet  ADS  Google Scholar 

  • J. Birn, The boundary value problem of magnetotail equilibrium. J. Geophys. Res. 96, 19441 (1991)

    ADS  Google Scholar 

  • J. Birn, Three-dimensional magnetotail equilibria with prescribed boundary shapes. J. Geophys. Res. 110, A07203 (2005). doi:10.1029/2004JA010869

    ADS  Google Scholar 

  • J. Birn, M. Hesse, Details of current disruption and diversion in simulations of magnetotail dynamics. J. Geophys. Res. 101(A7), 15345–15358 (1996). doi:10.1029/96JA00887

    ADS  Google Scholar 

  • J. Birn, K. Schindler, Thin current sheets in the magnetotail and the loss of equilibrium. J. Geophys. Res. 107(A7), SMP18 (2002). doi:10.1029/2001JA0291

    Google Scholar 

  • J. Birn, R. Sommer, K. Schindler, Open and closed magnetospheric tail configurations and their stability. Astrophys. Space Sci. 35, 389–402 (1975)

    ADS  Google Scholar 

  • J. Birn, M.F. Thomsen, J.E. Borovsky, G.D. Reeves, D.J. McComas, R.D. Belian, M. Hesse, Substorm ion injections: geosynchronous observations and test particle orbits in three-dimensional dynamic MHD fields. J. Geophys. Res. 102(A2), 2325–2341 (1997a). doi:10.1029/96JA03032

    ADS  Google Scholar 

  • J. Birn, M.F. Thomsen, J.E. Borovsky, G.D. Reeves, D.J. McComas, R.D. Belian, Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit. J. Geophys. Res. 102, 2309–2324 (1997b)

    ADS  Google Scholar 

  • J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M.M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace Environment Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3720 (2001)

    ADS  Google Scholar 

  • J. Birn, J. Raeder, Y.L. Wang, R.A. Wolf, M. Hesse, On the propagation of bubbles in the geomagnetic tail. Ann. Geophys. 22, 1773 (2004a)

    ADS  Google Scholar 

  • J. Birn, M.F. Thomsen, M. Hesse, Acceleration of oxygen ions in the dynamic magnetotail. Ann. Geophys. 22, 1305–1315 (2004b)

    ADS  Google Scholar 

  • J. Birn, M. Hesse, K. Schindler, On the role of entropy conservation and entropy loss governing substorm phases, in Proc. of the Eighth International Conference of Substorms, Banff, Canada, ed. by M. Syrjasuo, E. Donovan (Univ. of Calgary, Calgary, 2006), pp. 19–24

    Google Scholar 

  • J. Birn, M. Hesse, K. Schindler, S. Zaharia, Role of entropy in magnetotail dynamics. J. Geophys. Res. 114, A00D03 (2009). doi:10.1029/2008JA014015

    ADS  Google Scholar 

  • J. Birn, R. Nakamura, E. Panov, M. Hesse, Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection. J. Geophys. Res. 116, A01210 (2011). doi:10.1029/2010JA016083

    ADS  Google Scholar 

  • J. Birn, K. Schindler, M. Hesse, Magnetotail aurora connection: the role of thin current sheets, in Relationship Between Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. Geophysical Monograph, vol. 197 (Am. Geophysical Union, Washington, 2012a), p. 337

    Google Scholar 

  • J. Birn, A.V. Artemyev, D.N. Baker, M. Echim, M. Hoshino, L.M. Zelenyi, Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173, 49–102 (2012b). doi:10.1007/s11214-012-9874-4

    ADS  Google Scholar 

  • S.J. Bolton, The Juno mission, in Proceedings of the International Astronomical Union, IAU Symposium, vol. 269 (2010), pp. 92–100

    Google Scholar 

  • J.E. Borovsky, R.J. Nemzek, R.D. Belian, The occurrence rate of magnetospheric-substorm onsets: random and periodic substorms. J. Geophys. Res. 98, 3807 (1993)

    ADS  Google Scholar 

  • J.E. Borovsky, M.F. Thomsen, R.C. Elphic, The driving of the plasma sheet by the solar wind. J. Geophys. Res. 103, 17617–17640 (1998). doi:10.1029/97JA02986

    ADS  Google Scholar 

  • N.M. Brice, G.A. Ioannidis, The magnetospheres of Jupiter and Earth. Icarus 13, 173 (1970)

    ADS  Google Scholar 

  • J. Büchner, L.M. Zelenyi, Deterministic chaos in the dynamics of charged particles near a magnetic field reversal. Phys. Lett. A 118, 395–399 (1986). doi:10.1016/0375-9601(86)90268-9

    ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, D.M. Wright, A.J. Coates, M.K. Dougherty, N. Krupp, W.S. Kurth, A.M. Rymer, In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett. 32, L20S04 (2005)

    Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, I.I. Alexeev, C.S. Arridge, M.K. Dougherty, J.D. Nichols, C.T. Russell, Cassini observations of the variation of Saturn’s ring current parameters with system size. J. Geophys. Res. 112, A10202 (2007). doi:10.1029/2007JA012275

    ADS  Google Scholar 

  • E.J. Bunce et al., Origin of Saturn’s aurora: simultaneous observations by Cassini and the Hubble Space Telescope. J. Geophys. Res. 113, A09209 (2008). doi:10.1029/2008JA013257

    ADS  Google Scholar 

  • L.F. Burlaga, Magnetic fields and plasmas in the inner heliosphere: Helios results. Planet. Space Sci. 49(14–15), 1619–1627 (2001)

    ADS  Google Scholar 

  • P. Carlqvist, R. Boström, Space-charge regions above the aurora. J. Geophys. Res. 75, 7140 (1970)

    ADS  Google Scholar 

  • S. Chapman, J. Bartels, Geomagnetism (Clarendon Press, Oxford, 1962)

    Google Scholar 

  • R. Chappell, The terrestrial plasma source: a new perspective in solar-terrestrial processes from Dynamics Explorer. Rev. Geophys. 26(2), 229–248 (1988)

    ADS  Google Scholar 

  • C.C. Chaston, J.W. Bonnell, C.W. Carlson, J.P. McFadden, R.E. Ergun, R.J. Strangeway, Properties of small-scale Alfvén waves and accelerated electrons from FAST. J. Geophys. Res. 108, 8003 (2003). doi:10.1029/2002JA009420

    Google Scholar 

  • Y. Chen, T.W. Hill, Statistical analysis of injection/dispersion events in Saturn’s inner magnetosphere. J. Geophys. Res. 113, A07215 (2008). doi:10.1029/2008JA013166

    ADS  Google Scholar 

  • C.X. Chen, R.A. Wolf, Interpretation of high-speed flows in the plasma sheet. J. Geophys. Res. 98, 21409–21419 (1993)

    ADS  Google Scholar 

  • J.T. Clarke, J. Gerard, D. Grodent, S. Wannawichian, J. Gustin, J. Connerney, F. Crary, M. Dougherty, W. Kurth, S.W.H. Cowley, E.J. Bunce, T. Hill, J. Kim, Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter. Nature 433, 717–719 (2005). doi:10.1038/nature03331

    ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, N.F. Ness, Currents in Saturn’s magnetosphere. J. Geophys. Res. 88(A11), 8779–8789 (1983). doi:10.1029/JA088iA11p08779

    ADS  Google Scholar 

  • F.V. Coroniti, C.F. Kennel, Changes in magnetospheric configuration during the substorm growth phase. J. Geophys. Res. 77(19), 3361–3370 (1972). doi:10.1029/JA077i019p03361

    ADS  Google Scholar 

  • F.V. Coroniti, R.L. McPherron, G.K. Parks, Studies of the magnetospheric substorm: 3. Concept of the magnetospheric substorm and its relation to electron precipitation and micropulsations. J. Geophys. Res. 73(5), 1715–1722 (1968). doi:10.1029/JA073i005p01715

    ADS  Google Scholar 

  • S.W.H. Cowley, The causes of convection in the Earth’s magnetosphere: a review of developments during the IMS. Rev. Geophys. 20(3), 531–565 (1982). doi:10.1029/RG020i003p00531

    ADS  Google Scholar 

  • S.W.H. Cowley, The distant geomagnetic tail in theory and observation, in Magnetic Reconnection in Space and Laboratory Plasmas, ed. by E.W. Hones Jr. (1984), pp. 228–238

    Google Scholar 

  • S.W.H. Cowley, The structure and length of tail-associated phenomena in the solar wind downstream from the Earth. Planet. Space Sci. 7, 1039 (1991)

    ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067 (2001)

    ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras. Ann. Geophys. 21, 1691 (2003)

    ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: theoretical interpretation. Geophys. Res. Lett. 30(5), 1220 (2003). doi:10.1029/2002GL016030

    ADS  Google Scholar 

  • S.W.H. Cowley, S.V. Badman, E.J. Bunce, J.T. Clarke, J.C. Gerard, D. Grodent, C.M. Jackman, S.E. Milan, T.K. Yeoman, Reconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics. J. Geophys. Res. 110, A02201 (2005). doi:10.1029/2004JA010796

    ADS  Google Scholar 

  • S.W.H. Cowley, S.V. Badman, S.M. Imber, S.E. Milan, Comment on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind” by D.J. McComas and F. Bagenal. Geophys. Res. Lett. 35, L10101 (2008). doi:10.1029/2007GL032645

    ADS  Google Scholar 

  • D.C. Delcourt, Particle acceleration by inductive electric fields in the inner magnetosphere. J. Atmos. Sol.-Terr. Phys. 64, 551–559 (2002)

    ADS  Google Scholar 

  • D.C. Delcourt, J.-A. Sauvaud, T.E. Moore, Phase bunching during substorm dipolarization. J. Geophys. Res. 102(A11), 24313–24324 (1997). doi:10.1029/97JA02039

    ADS  Google Scholar 

  • M.D. Desch, Evidence for solar wind control of Saturn radio emission. J. Geophys. Res. 87, 4549–4554 (1982)

    ADS  Google Scholar 

  • M.D. Desch, H.O. Rucker, The relationship between Saturn kilometric radiation and the solar wind. J. Geophys. Res. 88, 8999–9006 (1983)

    ADS  Google Scholar 

  • A.J. Dessler, Length of magnetospheric tail. J. Geophys. Res. 69(19), 3913–3918 (1964). doi:10.1029/JZ069i019p03913

    ADS  Google Scholar 

  • G.A. DiBraccio, J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, D.N. Baker, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. 118 (2013). doi:10.1002/jgra.50123

  • M.K. Dougherty et al., Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006)

    ADS  Google Scholar 

  • S. Dubyagin, V. Sergeev, S. Apatenkov, V. Angelopoulos, A. Runov, R. Nakamura, W. Baumjohann, J. McFadden, D. Larson, Can flow bursts penetrate into the inner magnetosphere? Geophys. Res. Lett. 38, L08102 (2011). doi:10.1029/2011GL047016

    ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961). doi:10.1103/PhysRevLett.6.47

    ADS  Google Scholar 

  • J.W. Dungey, The structure of the exosphere or adventures in velocity space, in Geophysics, the Earth’s Environment, ed. by C. DeWitt, J. Hieblot, L. Le Beau (Gordon and Breach, New York, 1963), p. 503

    Google Scholar 

  • J.W. Dungey, The length of the magnetospheric tail. J. Geophys. Res. 70, 1753 (1965)

    ADS  Google Scholar 

  • T.E. Eastman, L.A. Frank, W.K. Peterson, W. Lennartsson, The plasma sheet boundary layer. J. Geophys. Res. 89, 1553–1572 (1984). doi:10.1029/JA089iA03p01553

    ADS  Google Scholar 

  • M.M. Echim, M. Roth, J. De Keyser, Sheared magnetospheric plasma flows and discrete auroral arcs: a quasi-static coupling model. Ann. Geophys. 25(1), 317–330 (2007). doi:10.5194/angeo-25-317-2007

    ADS  Google Scholar 

  • R.C. Elphic, P.A. Mutch, C.T. Russell, Observations of field-aligned currents at the plasma sheet boundary—an ISEE-1 and 2 survey. Geophys. Res. Lett. 12, 631–634 (1985). doi:10.1029/GL012i010p00631

    ADS  Google Scholar 

  • E. Engwall, A.I. Eriksson, C.M. Cully, M. Andre, R. Torbert, H. Vaith, Earth’s ionospheric outflow dominated by hidden cold plasma. Nat. Geosci. 2(1), 24–27 (2009). doi:10.1038/ngeo387

    ADS  Google Scholar 

  • G.M. Erickson, R.A. Wolf, Is steady convection possible in the Earth’s magnetotail? Geophys. Res. Lett. 7, 897 (1980)

    ADS  Google Scholar 

  • A.I. Eriksson, M. André, B. Klecker, H. Laakso, P.-A. Lindqvist, F. Mozer, G. Paschmann, A. Pedersen, J. Quinn, R. Torbert, K. Torkar, H. Vaith, Electric field measurements on Cluster: comparing the double-probe and electron drift techniques. Ann. Geophys. 24, 275–289 (2006). doi:10.5194/angeo-24-275-2006

    ADS  Google Scholar 

  • D.H. Fairfield, On the average configuration of the geomagnetic tail. J. Geophys. Res. 84, 1950–1958 (1979). doi:10.1029/JA084iA05p01950

    ADS  Google Scholar 

  • D.H. Fairfield, J. Jones, Variability of the tail lobe field strength. J. Geophys. Res. 101, 7785–7791 (1996). doi:10.1029/95JA03713

    ADS  Google Scholar 

  • D.H. Fairfield, J.D. Scudder, Polar rain—solar coronal electrons in the Earth’s magnetosphere. J. Geophys. Res. 90, 4055–4068 (1985). doi:10.1029/JA090iA05p04055

    ADS  Google Scholar 

  • D.H. Fairfield et al., Earthward flow bursts in the inner magnetotail and their relation to auroral brightenings, AKR intensifications, geosynchronous particle injections and magnetic activity. J. Geophys. Res. 104, 355–370 (1999)

    ADS  Google Scholar 

  • T.G. Forbes, E.W. Hones Jr., S.J. Bame, J.R. Asbridge, G. Paschmann, N. Sckopke, C.T. Russell, Evidence for the tailward retreat of a magnetic neutral line in the magnetotail during substorm recovery. Geophys. Res. Lett. 8, 261 (1981)

    ADS  Google Scholar 

  • C. Forsyth, M. Lester, S.W.H. Cowley, I. Dandouras, A.N. Fazakerley, R.C. Fear, H.U. Frey, A. Grocott, A. Kadokura, E. Lucek, H. Rème, S.E. Milan, J. Watermann, Observed tail current systems associated with bursty bulk flows and auroral streamers during a period of multiple substorms. Ann. Geophys. 26, 167–184 (2008)

    ADS  Google Scholar 

  • L.A. Frank, W.R. Paterson, K.K. Khurana, Observations of thermal plasmas in Jupiter’s magnetotail. J. Geophys. Res. 107(A1), 1003 (2002). doi:10.1029/2001JA000077

    Google Scholar 

  • M.P. Freeman, C.J. Farrugia, A statistical study of the possible effects of solar wind variability on the recurrence rate of substorms. J. Geophys. Res. 100, 23607 (1995)

    ADS  Google Scholar 

  • M.P. Freeman, C.J. Farrugia, Solar wind input between substorm onsets during and after the October 18–20, 1995, magnetic cloud. J. Geophys. Res. 104, 22729 (1999)

    ADS  Google Scholar 

  • M.P. Freeman, S.K. Morley, A minimal substorm model that explains the observed statistical distribution of times between substorms. Geophys. Res. Lett. 31, L12807 (2004). doi:10.1029/2004GL019989

    ADS  Google Scholar 

  • M.P. Freeman, S.K. Morley, No evidence for externally triggered substorms based on superposed epoch analysis of IMF B z . Geophys. Res. Lett. 36, L21101 (2009). doi:10.1029/2009GL040621

    ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF). Geophys. Res. Lett. 32 (2005). doi:10.1029/2004GL021392

  • K. Fukazawa, T. Ogino, R.J. Walker, Vortex-associated reconnection for northward IMF in the Kronian magnetosphere. Geophys. Res. Lett. 34 (2007). doi:10.1029/2007GL031784

  • K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 115, A09219 (2010). doi:10.1029/2009JA015228

    ADS  Google Scholar 

  • Y.S. Ge, C.T. Russell, K.K. Khurana, Reconnection sites in Jupiter’s magnetotail and relation to Jovian auroras. Planet. Space Sci. 58(11), 1455–1469 (2010)

    ADS  Google Scholar 

  • K.-H. Glassmeier, H.-U. Auster, U. Motschmann, A feedback dynamo generating Mercury’s magnetic field. Geophys. Res. Lett. 34, L22201 (2007). doi:10.1029/2007GL031662

    ADS  Google Scholar 

  • T. Gold, Motions in the magnetosphere of the Earth. J. Geophys. Res. 644(9), 1219–1224 (1959)

    ADS  Google Scholar 

  • M.L. Goldstein, R.P. Lepping, E.C. Sittler Jr., Magnetic field properties of Jupiter’s tail at distances from 80 to 7500 Jovian radii. J. Geophys. Res. 90, 8223–8239 (1985)

    ADS  Google Scholar 

  • O. Grasset et al., JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013)

    ADS  Google Scholar 

  • E.E. Grigorenko, M. Hoshino, M. Hirai, T. Mukai, L.M. Zelenyi, “Geography” of ion acceleration in the magnetotail: X-line versus current sheet effects. J. Geophys. Res. 114(A13), A03203 (2009). doi:10.1029/2008JA013811

    ADS  Google Scholar 

  • A. Grocott, S.V. Badman, S.W.H. Cowley, S.E. Milan, J.D. Nichols, T.K. Yeoman, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114, A07219 (2009). doi:10.1029/2009JA014330

    ADS  Google Scholar 

  • D. Grodent, J.T. Clarke, J.H. Waite Jr., S.W.H. Cowley, J.-C. Gérard, J. Kim, Jupiter’s polar auroral emissions. J. Geophys. Res. 108(A10), 1366 (2003a). doi:10.1029/2003JA010017

    Google Scholar 

  • D. Grodent, J.T. Clarke, J. Kim, J.H. Waite Jr., S.W.H. Cowley, Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. 108(A11), 1389 (2003b). doi:10.1029/2003JA009921

    Google Scholar 

  • D. Grodent, J.-C. Gérard, J.T. Clarke, G.R. Gladstone, J.H. Waite Jr., A possible auroral signature of magnetotail reconnection process on Jupiter. J. Geophys. Res. 109, A05201 (2004). doi:10.1029/2003JA010341

    ADS  Google Scholar 

  • D.A. Gurnett, The Earth as a radio source: terrestrial kilometric radiation. J. Geophys. Res. 79, 4227 (1974)

    ADS  Google Scholar 

  • P.G. Hanlon, M.K. Dougherty, N. Krupp, K.C. Hansen, F.J. Crary, D.T. Young, G. Tóth, Dual spacecraft observations of a compression event within the Jovian magnetosphere: signatures of externally triggered supercorotation? J. Geophys. Res. 109, A09S09 (2004). doi:10.1029/2003JA010116

    ADS  Google Scholar 

  • K.C. Hansen, T.I. Gombosi, D. Dezeeuw, C.P.T. Groth, K.G. Powell, A 3D global MHD simulation of Saturn’s magnetosphere. Adv. Space Res. 26, 1681–1690 (2000). doi:10.1016/S0273-1177(00)00078-8

    ADS  Google Scholar 

  • K.C. Hansen, A.J. Ridley, G.B. Hospodarsky, N. Achilleos, M.K. Dougherty, T.I. Gombosi, G. Tóth, Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophys. Res. Lett. 32, L20S06 (2005). doi:10.1029/2005GL022835

    Google Scholar 

  • E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115–121 (1962)

    MATH  Google Scholar 

  • H. Hasegawa, M. Fujimoto, T. Phan, H. Reme, A. Balogh, M. Dunlop, C. Hashimoto, R. TanDokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430(7001), 755–758 (2004). doi:10.1038/nature02799

    ADS  Google Scholar 

  • M.G. Henderson, G.D. Reeves, R.D. Belian, J.S. Murphree, Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger. J. Geophys. Res. 101(A5), 10773–10791 (1996). doi:10.1029/96JA00186

    ADS  Google Scholar 

  • J.P. Heppner, Time sequences and spatial relations in auroral activity during magnetic bays at College, Alaska. J. Geophys. Res. 59(3), 329–338 (1954). doi:10.1029/JZ059i003p00329

    ADS  Google Scholar 

  • M. Hesse, J. Birn, On dipolarization and its relation to the substorm current wedge. J. Geophys. Res. 96(A11), 19417–19426 (1991). doi:10.1029/91JA01953

    ADS  Google Scholar 

  • M. Hesse, K. Schindler, The onset of magnetic reconnection in the magnetotail. Earth Planets Space 53, 645–653 (2001)

    ADS  Google Scholar 

  • T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, A11 (1979)

    Google Scholar 

  • T.W. Hill, The Jovian auroral oval. J. Geophys. Res. 106(A5), 8101–8107 (2001). doi:10.1029/2000JA000302

    ADS  Google Scholar 

  • T.W. Hill, F.C. Michel, Heavy ions from the Galilean satellites and the centrifugal distortion of the Jovian magnetosphere. J. Geophys. Res. 81, 4561–4565 (1976)

    ADS  Google Scholar 

  • T.W. Hill, A.J. Dessler, F.C. Michel, Configuration of the Jovian magnetosphere. Geophys. Res. Lett. 1, 3–6 (1974). doi:10.1029/GL001i001p00003

    ADS  Google Scholar 

  • T.W. Hill et al., Plasmoids in Saturn’s magnetotail. J. Geophys. Res. 113, A01214 (2008). doi:10.1029/2007JA012626

    ADS  Google Scholar 

  • G.C. Ho, S.M. Krimigis, R.E. Gold, D.N. Baker, B.J. Anderson, H. Korth, J.A. Slavin, R.L. McNutt Jr., S.C. Solomon, Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. J. Geophys. Res. 117, A00M04 (2012). doi:10.1029/2012JA017983

    ADS  Google Scholar 

  • R.E. Holzer, J.A. Slavin, Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere. J. Geophys. Res. 83(A8), 3831–3839 (1978). doi:10.1029/JA083iA08p03831

    ADS  Google Scholar 

  • R.E. Holzer, J.A. Slavin, A correlative study of magnetic flux transfer in the magnetosphere. J. Geophys. Res. 84(A6), 2573–2578 (1979). doi:10.1029/JA084iA06p02573

    ADS  Google Scholar 

  • E.W. Hones Jr., The magnetotail: its generation and dissipation, in Physics of Solar Planetary Environments, ed. by D.J. Williams (AGU, Washington, 1976), pp. 559–571

    Google Scholar 

  • E.W. Hones Jr., Substorm processes in the magnetotail: comments on “On hot tenuous plasma, fireballs, and boundary layers in the Earth’s magnetotail” by L.A. Frank et al J. Geophys. Res. 82, 5633 (1977)

    ADS  Google Scholar 

  • E.W. Hones Jr., Plasma flow in the magnetotail and its implications for substorm theories, in Dynamics of the Magnetosphere, ed. by S.I. Akasofu (D. Reidel, Dordrecht, 1979), p. 545

    Google Scholar 

  • M. Hoshino, A. Nishida, T. Mukai, Y. Saito, T. Yamamoto, Structure of plasma sheet in magnetotail: double-peaked electric current sheet. J. Geophys. Res. 101, 24775 (1996)

    ADS  Google Scholar 

  • T.-S. Hsu, R.L. McPherron, Average characteristics of triggered and nontriggered substorms. J. Geophys. Res. 109, A07208 (2004). doi:10.1029/2003JA009933

    ADS  Google Scholar 

  • C.-S. Huang, J.C. Foster, G.D. Reeves, G. Le, H.U. Frey, C.J. Pollock, J.-M. Jahn, Periodic magnetospheric substorms: multiple space-based and ground-based instrumental observations. J. Geophys. Res. 108(A11), 1411 (2003). doi:10.1029/2003JA009992

    Google Scholar 

  • D.E. Huddleston, C.T. Russell, M.G. Kivelson, K.K. Khurana, L. Bennett, Location and shape of the Jovian magnetopause and bow shock. J. Geophys. Res. 103(E9), 20075–20082 (1998)

    ADS  Google Scholar 

  • W.J. Hughes, D.G. Sibeck, On the 3-dimensional structure of plasmoids. Geophys. Res. Lett. 14, 636–639 (1987). doi:10.1029/GL014i006p00636

    ADS  Google Scholar 

  • A. Ieda, S. Machida, T. Mukai, Y. Saito, T. Yamamoto, A. Nishida, T. Terasawa, S. Kokubun, Statistical analysis of the plasmoid evolution with geotail observations. J. Geophys. Res. 103(A3), 4453–4465 (1998). doi:10.1029/97JA03240

    ADS  Google Scholar 

  • S. Imada, M. Hoshino, T. Mukai, The dawn-dusk asymmetry of energetic electron in the Earth’s magnetotail: observation and transport models. J. Geophys. Res. 113(A12), A11201 (2008). doi:10.1029/2008JA013610

    ADS  Google Scholar 

  • S.M. Imber, S.E. Milan, B. Hubert, The auroral and ionospheric flow signatures of dual lobe reconnection. Ann. Geophys. 24, 3115–3129 (2006). doi:10.5194/angeo-24-3115-2006

    ADS  Google Scholar 

  • S.M. Imber, J.A. Slavin, H.U. Auster, V. Angelopoulos, A THEMIS survey of flux ropes and travelling compression regions: location of the near-Earth reconnection site during solar minimum. J. Geophys. Res. 116, A02201 (2011). doi:10.1029/2010JA016026

    ADS  Google Scholar 

  • D.S. Intriligator, H.R. Collard, J.D. Mihalov, O.L. Vaisberg, J.H. Wolf, Evidence for Earth magnetic tail associated phenomena at 3100 R E . Geophys. Res. Lett. 6, 585 (1979)

    ADS  Google Scholar 

  • W.-H. Ip, A. Kopp, MHD simulations of the solar wind interaction with Mercury. J. Geophys. Res. 107(A11), 1348 (2002). doi:10.1029/2001JA009171

    Google Scholar 

  • J. Isbell, A.J. Dessler, J.H. Waite Jr., Magnetospheric energization by interaction between planetary spin and the solar wind. J. Geophys. Res. 89, 10716–10722 (1984)

    ADS  Google Scholar 

  • P.L. Israelevich, A.I. Ershkovich, Bifurcation of Jovian magnetotail current sheet. Ann. Geophys. 24, 1479–1481 (2006)

    ADS  Google Scholar 

  • P.L. Israelevich, A.I. Ershkovich, R. Oran, Bifurcation of the tail current sheet in Jovian magnetosphere. Planet. Space Sci. 55, 2261–2266 (2007)

    ADS  Google Scholar 

  • C.M. Jackman, C.S. Arridge, Statistical properties of the magnetic field in the Kronian magnetotail lobes and current sheet. J. Geophys. Res. 116, A05224 (2011). doi:10.1029/2010JA015973

    ADS  Google Scholar 

  • C.M. Jackman, N. Achilleos, E.J. Bunce, S.W.H. Cowley, M.K. Dougherty, G.H. Jones, S.E. Milan, E.J. Smith, Interplanetary magnetic field at ∼9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics. J. Geophys. Res. 109, 11203 (2004). doi:10.1029/2004JA010614

    Google Scholar 

  • C.M. Jackman, C.T. Russell, D.J. Southwood, C.S. Arridge, N. Achilleos, M.K. Dougherty, Strong rapid dipolarizations in Saturn’s magnetotail: in situ evidence of reconnection. Geophys. Res. Lett. 34, L11203 (2007). doi:10.1029/2007GL029764

    ADS  Google Scholar 

  • C.M. Jackman, R.J. Forsyth, M.K. Dougherty, The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations. J. Geophys. Res. 113, A08114 (2008a). doi:10.1029/2008JA013083

    ADS  Google Scholar 

  • C.M. Jackman et al., A multi-instrument view of tail reconnection at Saturn. J. Geophys. Res. 113, A11213 (2008b). doi:10.1029/2008JA013592

    ADS  Google Scholar 

  • C.M. Jackman, L. Lamy, M.P. Freeman, P. Zarka, B. Cecconi, W.S. Kurth, S.W.H. Cowley, M.K. Dougherty, On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res. 114, A08211 (2009)

    ADS  Google Scholar 

  • C.M. Jackman, J.A. Slavin, S.W.H. Cowley, Cassini observations of plasmoid structure and dynamics: implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. J. Geophys. Res. 116, A10212 (2011). doi:10.1029/2011JA016682

    ADS  Google Scholar 

  • C.M. Jackman, N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, W. Pryor, Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci. 82–83, 34–42 (2013). doi:10.1016/j.pss.2013.03.010

    Google Scholar 

  • C.M. Jackman, J.A. Slavin, M.G. Kivelson, D.J. Southwood, N. Achilleos, M.F. Thomsen, G.A. DiBraccio, J.P. Eastwood, M.P. Freeman, M.K. Dougherty, M.F. Vogt, Saturn’s dynamic magnetotail: a comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics. J. Geophys. Res. Space Phys. 119 (2014). doi:10.1002/2013JA019388

  • C. Jacquey, J.A. Sauvaud, J. Dandouras, Location and propagation of the magnetotail current disruption during substorm expansion: analysis and simulation of an ISEE multi-onset event. Geophys. Res. Lett. 18(3), 389–392 (1991). doi:10.1029/90GL02789

    ADS  Google Scholar 

  • X. Jia, M.G. Kivelson, T.I. Gombosi, Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere. J. Geophys. Res. 117, A04215 (2012a). doi:10.1029/2011JA017367

    ADS  Google Scholar 

  • X. Jia, K.C. Hansen, T.I. Gombosi, M.G. Kivelson, G. Tóth, D.L. DeZeeuw, A.J. Ridley, Magnetospheric configuration and dynamics of Saturn’s magnetosphere: a global MHD simulation. J. Geophys. Res. 117, A05225 (2012b). doi:10.1029/2012JA017575

    ADS  Google Scholar 

  • T. Johansson, G. Marklund, T. Karlsson, S. Liléo, P.-A. Lindqvist, A. Marchaudon, H. Nilsson, A. Fazakerley, On the profile of intense high-altitude auroral electric fields at magnetospheric boundaries. Ann. Geophys. 24, 1713 (2006)

    ADS  Google Scholar 

  • J.R. Johnson, C.Z. Cheng, Kinetic Alfvén waves and plasma transport at the magnetopause. Geophys. Res. Lett. 24(11), 1423–1426 (1997). doi:10.1029/97GL01333

    ADS  Google Scholar 

  • S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107(A10), 1309 (2002). doi:10.1029/2001JA009146

    Google Scholar 

  • K. Kabin, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, Interaction of Mercury with the solar wind. Icarus 143(2), 397–406 (2000)

    ADS  Google Scholar 

  • K. Kabin et al., Global MHD modelling of Mercury’s magnetosphere with applications to the MESSENGER mission and dynamo theory. Icarus 195, 1–15 (2008)

    ADS  Google Scholar 

  • M.L. Kaiser, J.K. Alexander, Terrestrial kilometric radiation 3. Average spectral properties. J. Geophys. Res. 82, 3273–3280 (1977)

    ADS  Google Scholar 

  • M.L. Kaiser, M.D. Desch, J.W. Warwick, J.B. Pearce, Voyager detection of nonthermal radio emission from Saturn. Science 209, 1238–1240 (1980)

    ADS  Google Scholar 

  • E. Kallio, P. Janhunen, Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model. Ann. Geophys. 21(11), 2133–2145 (2003)

    ADS  Google Scholar 

  • S.J. Kanani, C.S. Arridge, G.H. Jones, A.N. Fazakerley, H.J. McAndrews, N. Sergis, S.M. Krimigis, M.K. Dougherty, A.J. Coates, D.T. Young, K.C. Hansen, N. Krupp, A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in-situ, multi-instrument Cassini measurements. J. Geophys. Res. 115, A06207 (2010). doi:10.1029/2009JA014262

    ADS  Google Scholar 

  • M. Kane, B.H. Mauk, E.P. Keath, S.M. Krimigis, Hot ions in Jupiter’s magnetodisc: a model for Voyager 2 low-energy charged particle measurements. J. Geophys. Res. 100(A10), 19473–19486 (1995). doi:10.1029/95JA00793

    ADS  Google Scholar 

  • M. Kane, D.J. Williams, B.H. Mauk, R.W. McEntire, E.C. Roelof, Galileo energetic particles detector measurements of hot ions in the neutral sheet region of Jupiter’s magnetodisk. Geophys. Res. Lett. 26(1), 5–8 (1999). doi:10.1029/1998GL900267

    ADS  Google Scholar 

  • S. Kasahara, E.A. Kronberg, N. Krupp, T. Kimura, C. Tao, S.V. Badman, A. Retinò, M. Fujimoto, Magnetic reconnection in the Jovian tail: X-line evolution and consequent plasma sheet structures. J. Geophys. Res. 116, A11219 (2011). doi:10.1029/2011JA016892

    ADS  Google Scholar 

  • S. Kasahara, E.A. Kronberg, T. Kimura, C. Tao, S.V. Badman, A. Masters, A. Retinò, N. Krupp, M. Fujimoto, Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. J. Geophys. Res. 118, 375–384 (2013). doi:10.1029/2012JA018130

    Google Scholar 

  • A. Keiling, V. Angelopoulos, A. Runov, J. Weygand, S.V. Apatenkov, S. Mende, J. McFadden, D. Larson, O. Amm, K.-H. Glassmeier, H.U. Auster, Substorm current wedge driven by plasma flow vortices: THEMIS observations. J. Geophys. Res. 114(A13), A00C22 (2009). doi:10.1029/2009JA014114

    ADS  Google Scholar 

  • C.F. Kennel, Magnetospheres of the planets. Space Sci. Rev. 14, 511–533 (1973)

    ADS  Google Scholar 

  • L. Kepko, E. Spanswick, V. Angelopoulos, E. Donovan, J. McFadden, K.-H. Glassmeier, J. Raeder, H.J. Singer, Equatorward moving auroral signatures of a flow burst observed prior to auroral onset. Geophys. Res. Lett. 36, L24104 (2009). doi:10.1029/2009GL041476

    ADS  Google Scholar 

  • Y.V. Khotyaintsev, C.M. Cully, A. Vaivads, M. André, C.J. Owen, Plasma jet braking: energy dissipation and nonadiabatic electrons. Phys. Rev. Lett. 106, 165001 (2011). doi:10.1103/PhysRevLett.106.165001

    ADS  Google Scholar 

  • K.K. Khurana, Euler potential models of Jupiter’s magnetospheric field. J. Geophys. Res. 102(A6), 11295–11306 (1997)

    ADS  Google Scholar 

  • K.K. Khurana, Influence of solar wind on Jupiter’s magnetosphere deduced from currents in the equatorial plane. J. Geophys. Res. 106, 25999–26016 (2001)

    ADS  Google Scholar 

  • K.K. Khurana, H.K. Schwarzl, Global structure of Jupiter’s magnetospheric current sheet. J. Geophys. Res. 110, A07227 (2005). doi:10.1029/2004JA010757

    ADS  Google Scholar 

  • A. Kidder, R.M. Winglee, E.M. Harnett, Erosion of the dayside magnetosphere at Mercury in association with ion outflows and flux rope generation. J. Geophys. Res. 113, A09223 (2008). doi:10.1029/2008JA013038

    ADS  Google Scholar 

  • A. Kidder, C.S. Paty, R.M. Winglee, E.M. Harnett, External triggering of plasmoid development at Saturn. J. Geophys. Res. 117, A07206 (2012). doi:10.1029/2012JA017625

    ADS  Google Scholar 

  • S.A. Kiehas, V. Angelopoulos, A. Runov, M.B. Moldwin, C. Möstl, On the formation of tilted flux ropes in the Earth’s magnetotail observed with ARTEMIS. J. Geophys. Res. 117, A05231 (2012). doi:10.1029/2011JA017377

    ADS  Google Scholar 

  • M.G. Kivelson, Planetary magnetospheres, in Solar-Terrestrial Environment, ed. by Y. Kamide, C.-L. Chian (Springer, New York, 2007), pp. 470–492. Chap. 19

    Google Scholar 

  • M.G. Kivelson, K.K. Khurana, Properties of the magnetic field in the Jovian magnetotail. J. Geophys. Res. 107(A8), 1196 (2002). doi:10.1029/2001JA000249

    Google Scholar 

  • M.G. Kivelson, D.J. Southwood, First evidence of IMF control of Jovian magnetospheric boundary locations: Cassini and Galileo magnetic field measurements compared. Planet. Space Sci. 51, 891–898 (2003)

    ADS  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. 110, A12209 (2005). doi:10.1029/2005JA011176

    ADS  Google Scholar 

  • M.G. Kivelson, A.J. Ridley, Saturation of the polar cap potential: inference from Alfvén wing arguments. J. Geophys. Res. 113, A05214 (2008). doi:10.1029/2007JA012302

    ADS  Google Scholar 

  • H. Korth, B.J. Anderson, J.M. Raines, J.A. Slavin, T.H. Zurbuchen, C.L. Johnson, M.E. Purucker, R.M. Winslow, S.C. Solomon, R.L. McNutt Jr., Plasma pressure in Mercury’s equatorial magnetosphere derived from MESSENGER magnetometer observations. Geophys. Res. Lett. 38, L22201 (2011). doi:10.1029/2011GL049451

    ADS  Google Scholar 

  • E.A. Kronberg, K.-H. Glassmeier, J. Woch, N. Krupp, A. Lagg, M.K. Dougherty, A possible intrinsic mechanism for the quasi-periodic dynamics of the Jovian magnetosphere. J. Geophys. Res. 112, A05203 (2007). doi:10.1029/2006JA011994

    ADS  Google Scholar 

  • E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, Mass release process in the Jovian magnetosphere: statistics on particle burst parameters. J. Geophys. Res. 113, A10202 (2008). doi:10.1029/2008JA013332

    ADS  Google Scholar 

  • E.A. Kronberg, S. Kasahara, N. Krupp, J. Woch, Field-aligned beams and reconnection in the Jovian magnetotail. Icarus 217, 55–65 (2012)

    ADS  Google Scholar 

  • N. Krupp, J. Woch, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Energetic particle bursts in the predawn Jovian magnetotail. Geophys. Res. Lett. 25(8), 1249–1252 (1998). doi:10.1029/98GL00863

    ADS  Google Scholar 

  • W.S. Kurth, J.D. Sullivan, D.A. Gurnett, F.L. Scarf, H.S. Bridge, E.C. Sittler Jr., Observations of Jupiter’s distant magnetotail and wake. J. Geophys. Res. 87(A12), 10373–10383 (1982). doi:10.1029/JA087iA12p10373

    ADS  Google Scholar 

  • W.S. Kurth, T. Murata, G. Lu, D.A. Gurnett, H. Matsumoto, Auroral kilometric radiation and the auroral electrojet index for the January 1997 magnetic cloud event. Geophys. Res. Lett. 25, 3027–3030 (1998)

    ADS  Google Scholar 

  • H.R. Lai, H.Y. Wei, C.T. Russell, C.S. Arridge, M.K. Dougherty, Reconnection at the magnetopause of Saturn: perspective from FTE occurrence and magnetosphere size. J. Geophys. Res. 117, A05222 (2012). doi:10.1029/2011JA017263

    ADS  Google Scholar 

  • L. Lamy, P. Zarka, B. Cecconi, R. Prangé, W.S. Kurth, D.A. Gurnett, Saturn kilometric radiation: average and statistical properties. J. Geophys. Res. 113, A07201 (2008). doi:10.1029/2007JA012900

    ADS  Google Scholar 

  • R.P. Lepping, M.D. Desch, L.W. Klein, E.C. Sittler Jr., J.D. Sullivan, W.S. Kurth, K.W. Behannon, Structure and other properties of Jupiter’s distant magnetotail. J. Geophys. Res. 88(A11), 8801–8815 (1983). doi:10.1029/JA088iA11p08801

    ADS  Google Scholar 

  • T.W. Lezniak, R.L. Arnoldy, G.K. Parks, J.R. Winckler, Measurement and intensity of energetic electrons at the equator at 6.6 R E . Radio Sci. 3, 710 (1968)

    ADS  Google Scholar 

  • X. Li, D.N. Baker, M. Temerin, G.D. Reeves, Simulation of dispersionless injections and subsequent drift echoes of energetic electrons associated with substorms. Geophys. Res. Lett. 25, 3763 (1998)

    ADS  Google Scholar 

  • K. Liou, Large, abrupt pressure decreases as a substorm onset trigger. Geophys. Res. Lett. 34, L14107 (2007). doi:10.1029/2007GL029909

    ADS  Google Scholar 

  • M. Lockwood, S.W.H. Cowley, Ionospheric convection and the substorm cycle, in Proceedings of the International Conference on Substorms (ICS-1). ESA Spec. Publ., vol. SP-335 (1992), pp. 99–109

    Google Scholar 

  • M. Lockwood, M.A. Hapgood, How the magnetopause transition parameter works. Geophys. Res. Lett. 24, 373–376 (1997). doi:10.1029/97GL00120

    ADS  Google Scholar 

  • P. Louarn, A. Roux, S. Perraut, W.S. Kurth, D.A. Gurnett, A study of the Jovian “energetic magnetospheric events” observed by Galileo: role in the radial plasma transport. J. Geophys. Res. 105(A6), 13073–13088 (2000). doi:10.1029/1999JA900478

    ADS  Google Scholar 

  • P. Louarn et al., Observation of similar radio signatures at Saturn and Jupiter: implications for the magnetospheric dynamics. Geophys. Res. Lett. 34, L20113 (2007). doi:10.1029/2007GL030368

    ADS  Google Scholar 

  • A.T.Y. Lui, A synthesis of magnetospheric substorm models. J. Geophys. Res. 96, 1849 (1991)

    ADS  Google Scholar 

  • A.T.Y. Lui, Comment on “Tail reconnection triggering substorm onset”. Science 324(5933) (2009). doi:10.1126/science.1167726

  • L.R. Lyons, Substorms: fundamental observational features, distinction from other disturbances, and external triggering. J. Geophys. Res. 101(A6), 13011–13025 (1996). doi:10.1029/95JA01987

    ADS  Google Scholar 

  • L.R. Lyons, T.W. Speiser, Evidence for current sheet acceleration in the geomagnetic tail. J. Geophys. Res. 87, 2276–2286 (1982). doi:10.1029/JA087iA04p02276

    ADS  Google Scholar 

  • L.R. Lyons, G.T. Blanchard, J.C. Samson, R.P. Lepping, T. Yamamoto, T. Moretto, Coordinated observations demonstrating external substorm triggering. J. Geophys. Res. 102(A12), 27039–27051 (1997). doi:10.1029/97JA02639

    ADS  Google Scholar 

  • L. Lyons, T. Nagai, G. Blanchard, J. Samson, T. Yamamoto, T. Mukai, A. Nishida, S. Kokubun, Association between geotail plasma flows and auroral poleward boundary intensifications observed by CANOPUS photometers. J. Geophys. Res. 104(A3), 4485–4500 (1999)

    ADS  Google Scholar 

  • W.M. Macek, W.S. Kurth, R.P. Lepping, D.G. Sibeck, Distant magnetotails of the outer magnetic planets. Adv. Space Res. 12(8), 847–855 (1992)

    Google Scholar 

  • G. Marklund, T. Karlsson, J. Clemmons, On low-altitude particle acceleration and intense electric fields and their relationship to black aurora. J. Geophys. Res. 102, 17509–17522 (1997)

    ADS  Google Scholar 

  • A. Masters, D.G. Mitchell, A.J. Coates, M.K. Dougherty, Saturn’s low-latitude boundary layer: 1. Properties and variability. J. Geophys. Res. 116, A06210 (2011a). doi:10.1029/2010JA016421

    ADS  Google Scholar 

  • A. Masters, M.F. Thomsen, S.V. Badman, C.S. Arridge, D.T. Young, A.J. Coates, M.K. Dougherty, Supercorotating return flow from reconnection in Saturn’s magnetotail. Geophys. Res. Lett. 38, L03103 (2011b). doi:10.1029/2010GL046149

    ADS  Google Scholar 

  • B.H. Mauk et al., Energetic neutral atoms from a trans-Europa gas torus at Jupiter. Nature 421, 920–922 (2003)

    ADS  Google Scholar 

  • H.J. McAndrews, M.F. Thomsen, C.S. Arridge, C.M. Jackman, R.J. Wilson, M.G. Henderson, R.L. Tokar, K.K. Khurana, E.C. Sittler, A.J. Coates, M.K. Dougherty, Plasma in Saturn’s nightside magnetosphere and the implications for global circulation. Planet. Space Sci. 57(14–15), 1714–1722 (2009). doi:10.1016/j.pss.2009.03.003

    ADS  Google Scholar 

  • D.J. McComas, F. Bagenal, Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34, L20106 (2007). doi:10.1029/2007GL031078

    ADS  Google Scholar 

  • D.J. McComas, F. Allegrini, F. Bagenal, F. Crary, R.W. Ebert, H. Elliott, A. Stern, P. Valek, Diverse plasma populations and structures in Jupiter’s magnetotail. Science 318 (2007). doi:10.1126/science.1147393

  • D.J. McComas et al., First IBEX observations of the terrestrial plasma sheet and a possible disconnection event. Geophys. Res. Lett. 116, A02211 (2011)

    ADS  Google Scholar 

  • R.L. McNutt Jr., Force balance in the magnetospheres of Jupiter and Saturn. Adv. Space Res. 3, 55–58 (1983)

    ADS  Google Scholar 

  • R.L. McNutt Jr. et al., Energetic particles in the Jovian magnetotail. Science 318, 220 (2007)

    ADS  Google Scholar 

  • R.L. McPherron, C.T. Russell, M.P. Aubry, Satellite studies of magnetospheric substorms on August 15, 1968. 9. Phenomenological model for substorms. J. Geophys. Res. 78, 3131–3149 (1973). doi:10.1029/JA078i016p03131

    ADS  Google Scholar 

  • F.C. Michel, P.A. Sturrock, Centrifugal instability of the Jovian magnetosphere and its interaction with the solar wind. Planet. Space Sci. 22, 1501 (1974)

    ADS  Google Scholar 

  • S.E. Milan, A simple model of the flux content of the distant magnetotail. J. Geophys. Res. 109, A07210 (2004). doi:10.1029/2004JA010397

    ADS  Google Scholar 

  • S.E. Milan, Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval. Geophys. Res. Lett. 36, L18101 (2009). doi:10.1029/2009GL039997

    ADS  Google Scholar 

  • S.E. Milan, J.A. Slavin, An assessment of the length and variability of Mercury’s magnetotail. Planet. Space Sci. 59, 2058–2065 (2011)

    ADS  Google Scholar 

  • S.E. Milan, E.J. Bunce, S.W.H. Cowley, C.M. Jackman, Implications of rapid planetary rotation for the Dungey magnetotail of Saturn. J. Geophys. Res. 110, A03209 (2005). doi:10.1029/2004JA010716

    ADS  Google Scholar 

  • S.E. Milan, G. Provan, B. Hubert, Magnetic flux transport in the Dungey cycle: a survey of dayside and nightside reconnection rates. J. Geophys. Res. 112, A01209 (2007). doi:10.1029/2006JA011642

    ADS  Google Scholar 

  • S.E. Milan, P.D. Boakes, B. Hubert, Response of the expanding/contracting polar cap to weak and strong solar wind driving: implications for substorm onset. J. Geophys. Res. 113, A09215 (2008). doi:10.1029/2008JA013340

    ADS  Google Scholar 

  • S.E. Milan, J.S. Gosling, B. Hubert, Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap. J. Geophys. Res. 117, A03226 (2012). doi:10.1029/2011JA017082

    ADS  Google Scholar 

  • A. Milillo et al., The BepiColombo mission: an outstanding tool for investigating the Hermean environment. Planet. Space Sci. 58, 40–60 (2010)

    ADS  Google Scholar 

  • D.G. Mitchell, F. Kutchko, D.J. Williams, T.E. Eastman, L.A. Frank, An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere. J. Geophys. Res. 92, 7394–7404 (1987). doi:10.1029/JA092iA07p07394

    ADS  Google Scholar 

  • D.G. Mitchell, P.C. Brandt, E.C. Roelof, D.C. Hamilton, K.C. Retterer, S. Mende, Global imaging of O+ from IMAGE/HENA. Space Sci. Rev. 109, 63–75 (2003)

    ADS  Google Scholar 

  • D.G. Mitchell et al., Energetic ion acceleration in Saturn’s magnetotail: substorms at Saturn? Geophys. Res. Lett. 32, L20S01 (2005). doi:10.1029/2005GL022647

    Google Scholar 

  • D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J. Gerard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight to-dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57, 1732–1742 (2009). doi:10.1016/j.pss.2009.04.002

    ADS  Google Scholar 

  • P.F. Mizera, D.J. Gorney, J.F. Fennell, Experimental verification of an S-shaped potential structure. J. Geophys. Res. 87, 1535 (1982)

    ADS  Google Scholar 

  • M. Moldwin, W. Hughes, On the formation and evolution of plasmoids: a survey of ISEE 3 geotail data. J. Geophys. Res. 97, 19259–19282 (1992). doi:10.1029/92JA01598

    ADS  Google Scholar 

  • T. Moore, C. Chappell, M. Chandler, P. Craven, B. Giles, C. Pollock, J. Burch, D. Young, J. Waite, J. Nordholt, M. Thomsen, D. McComas, J. Berthelier, W. Williamson, R. Robson, F. Mozer, High-altitude observations of the polar wind. Science 277(5324), 349–351 (1997). doi:10.1126/science.277.5324.349

    ADS  Google Scholar 

  • A. Morioka, Y. Miyoshi, F. Tsuchiya, H. Misawa, T. Sakanoi, K. Yumoto, R.R. Anderson, J.D. Menietti, E.F. Donovan, Dual structure of auroral acceleration regions at substorm onsets as derived from AKR spectra. J. Geophys. Res. 112, A06245 (2007). doi:10.1029/2006JA012186

    ADS  Google Scholar 

  • A. Morioka, Y. Miyoshi, Y. Miyashita, Y. Kasaba, H. Misawa, F. Tsuchiya, R. Kataoka, A. Kadokura, T. Mukai, K. Yumoto, D.J. Menietti, G. Parks, K. Liou, F. Honary, E. Donovan, Two-step evolution of auroral acceleration at substorm onset. J. Geophys. Res. 115, A11213 (2010). doi:10.1029/2010JA015361

    ADS  Google Scholar 

  • S.K. Morley, M.P. Freeman, On the association between northward turnings of the interplanetary magnetic field and substorm onsets. Geophys. Res. Lett. 34, L08104 (2007). doi:10.1029/2006GL028891

    ADS  Google Scholar 

  • S.K. Morley, A.P. Rouillard, M.P. Freeman, Recurrent substorm activity during the passage of a corotating interaction region. J. Atmos. Sol.-Terr. Phys. 71(10–11), 1073–1081 (2009). doi:10.1016/j.jastp.2008.11.009

    ADS  Google Scholar 

  • F.S. Mozer, C.A. Cattell, M.K. Hudson, R.L. Lysak, M. Temerin, R.B. Torbert, Satellite measurements and theories of low-altitude auroral particle acceleration. Space Sci. Rev. 27, 155 (1980)

    ADS  Google Scholar 

  • R. Nakamura et al., Earthward flow bursts, auroral streamers, and small expansions. J. Geophys. Res. 106, 10791 (2001)

    ADS  Google Scholar 

  • R. Nakamura, W. Baumjohann, A. Runov, M. Volwerk, T.L. Zhang, B. Klecker, Y. Bogdanova, A. Roux, A. Balogh, H. Reme, J.A. Sauvaud, H.U. Frey, Fast flow during current sheet thinning. Geophys. Res. Lett. 29, 2140 (2002)

    ADS  Google Scholar 

  • R. Nakamura, W. Baumjohann, C. Mouikis, L.M. Kistler, A. Runov, M. Volwerk, Y. Asano, Z. Vörös, T.L. Zhang, B. Klecker, H. Rème, A. Balogh, Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophys. Res. Lett. 31, L09804 (2004). doi:10.1029/2004GL019558

    ADS  Google Scholar 

  • N.F. Ness, The Earth’s magnetic tail. J. Geophys. Res. 70(13), 2989–3005 (1965). doi:10.1029/JZ070i013p02989

    ADS  Google Scholar 

  • N. Ness, Magnetic fields of Mercury, Mars, and Moon. Annu. Rev. Earth Planet. Sci. 7, 249–288 (1979)

    ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Magnetic field observations near Mercury: preliminary results from Mariner 10. Science 185, 151–160 (1974)

    ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, L.F. Burlaga, Configuration of Jupiter’s magnetic tail and equatorial current sheet. Adv. Space Res. 1, 225 (1981)

    ADS  Google Scholar 

  • P.T. Newell, Reconsidering the inverted-V particle signature: relative frequency of large-scale electron acceleration events. J. Geophys. Res. 105, 15779–15794 (2000). doi:10.1029/1999JA000051

    ADS  Google Scholar 

  • P.T. Newell, K. Liou, Solar wind driving and substorm triggering. J. Geophys. Res. 116, A03229 (2011). doi:10.1029/2010JA016139

    ADS  Google Scholar 

  • J.D. Nichols, S.W.H. Cowley, D.J. McComas, Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at ∼5 AU. Ann. Geophys. 24, 393–406 (2006)

    ADS  Google Scholar 

  • J.D. Nichols et al., Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope. Geophys. Res. Lett. 41 (2014). doi:10.1002/2014GL060186

  • A. Nishida, T. Mukai, T. Yamamoto, S. Kokubun, K. Maezawa, A unified model of the magnetotail convection in geomagnetically quiet and active times. J. Geophys. Res. 103, 4409–4418 (1998)

    ADS  Google Scholar 

  • Y. Nishimura, L. Lyons, S. Zou, V. Angelopoulos, S. Mende, Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations. J. Geophys. Res. 115, A07222 (2010). doi:10.1029/2009JA015166

    ADS  Google Scholar 

  • M.N. Nishino, H. Hasegawa, M. Fujimoto, Y. Saito, T. Mukai, I. Dandouras, H. Rème, A. Retinò, R. Nakamura, E. Lucek, S.J. Schwartz, A case study of Kelvin-Helmholtz vortices on both flanks of the Earth’s magnetotail. Planet. Space Sci. 59, 502–509 (2011). doi:10.1016/j.pss.2010.03.011

    ADS  Google Scholar 

  • M. Nosé, A.T.Y. Lui, S. Ohtani, B.H. Mauk, R.W. McEntire, D.J. Williams, T. Mukai, K. Yumoto, Acceleration of oxygen ions of ionospheric origin in the near-Earth magnetotail during substorms. J. Geophys. Res. 105(A4), 7669–7677 (2000a). doi:10.1029/1999JA000318

    ADS  Google Scholar 

  • M. Nosé, S. Ohtani, A.T.Y. Lui, S.P. Christon, R.W. McEntire, D.J. Williams, T. Mukai, Y. Saito, K. Yumoto, Change of energetic ion composition in the plasma sheet during substorms. J. Geophys. Res. 105(A10), 23277–23286 (2000b). doi:10.1029/2000JA000129

    ADS  Google Scholar 

  • K. Nykyri, A. Otto, Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices. Geophys. Res. Lett. 28(18), 3565–3568 (2001). doi:10.1029/2001GL013239

    ADS  Google Scholar 

  • K. Nykyri, A. Otto, B. Lavraud, C. Mouikis, L.M. Kistler, A. Balogh, H. Rème, Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank. Ann. Geophys. 24, 2619–2643 (2006)

    ADS  Google Scholar 

  • K.W. Ogilvie et al., Observations at Mercury encounter by the plasma science instrument on Mariner 10. Science 185, 145–150 (1974)

    ADS  Google Scholar 

  • K.W. Ogilvie, J.D. Scudder, V.M. Vasyliunas, R.E. Hartle, G.L. Siscoe, Observations at the planet Mercury by the plasma electron experiment—Mariner 10. J. Geophys. Res. 82, 1807–1824 (1977). doi:10.1029/JA082i013p01807

    ADS  Google Scholar 

  • S. Ohtani, M.A. Shay, T. Mukai, Temporal structure of the fast convective flow in the plasma sheet: comparison between observations and two-fluid simulations. J. Geophys. Res. 109(A18), A03210 (2004). doi:10.1029/2003JA010002

    ADS  Google Scholar 

  • M. Oieroset et al., THEMIS multi-spacecraft observations of magnetosheath plasma penetration deep into the dayside low-latitude magnetosphere for northward and strong B y IMF. Geophys. Res. Lett. 35(17), L17S11 (2008)

    Google Scholar 

  • E.N. Parker, Interaction of the solar wind with the geomagnetic field. Phys. Fluids 1, 171 (1958a). doi:10.1063/1.1724339

    MATH  MathSciNet  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary magnetic field. Astrophys. J. 128, 664 (1958b)

    ADS  Google Scholar 

  • G.K. Parks, J.R. Winckler, Acceleration of energetic electrons observed at the synchronous altitude during magnetospheric substorms. J. Geophys. Res. 73, 5786 (1968)

    ADS  Google Scholar 

  • G.K. Parks, M. McCarthy, R.J. Fitzenreiter, K.W. Ogilvie, J. Etcheto, K.A. Anderson, R.P. Lin, R.R. Anderson, T.E. Eastman, L.A. Frank, Particle and field characteristics of the high-latitude plasma sheet boundary layer. J. Geophys. Res. 89, 8885–8906 (1984). doi:10.1029/JA089iA10p08885

    ADS  Google Scholar 

  • A.A. Petrukovich, A.V. Artemyev, H.V. Malova, V.Y. Popov, R. Nakamura, L.M. Zelenyi, Embedded current sheets in the Earth’s magnetotail. J. Geophys. Res. 116, A00I25 (2011). doi:10.1029/2010JA015749

    ADS  Google Scholar 

  • J.H. Piddington, Geomagnetic storm theory. J. Geophys. Res. 65(1), 93–106 (1960). doi:10.1029/JZ065i001p00093

    ADS  Google Scholar 

  • C.J. Pollock et al., The role and contributions of energetic neutral atom (ENA) imaging in magnetospheric substorm research. Space Sci. Rev. 109, 155–182 (2003)

    ADS  Google Scholar 

  • J.D.H. Pontius, R.A. Wolf, Transient flux tubes in the terrestrial magnetosphere. Geophys. Res. Lett. 17, 49–52 (1990)

    ADS  Google Scholar 

  • T.I. Pulkkinen, D.N. Baker, C.J. Owen, J.T. Gosling, N. Murphy, Thin current sheets in the deep geomagnetic tail. Geophys. Res. Lett. 20, 2427 (1993)

    ADS  Google Scholar 

  • A. Radioti, J. Woch, E.A. Kronberg, N. Krupp, A. Lagg, K.-H. Glassmeier, M.K. Dougherty, Energetic ion composition during reconfiguration events in the Jovian magnetotail. J. Geophys. Res. 112, A06221 (2007). doi:10.1029/2006JA012047

    ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, J.T. Clarke, Auroral polar dawn spots: signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett. 35, L03104 (2008). doi:10.1029/2007GL032460

    ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter. J. Geophys. Res. 115, A07214 (2010). doi:10.1029/2009JA014844

    ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, M.F. Vogt, M. Lystrup, B. Bonfond, Nightside reconnection at Jupiter: auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. 116, A03221 (2011). doi:10.1029/2010JA016200

    ADS  Google Scholar 

  • A. Radioti, E. Roussos, D. Grodent, J.-C. Gérard, N. Krupp, D.G. Mitchell, J. Gustin, B. Bonfond, W. Pryor, Signatures of magnetospheric injections in Saturn’s aurora. J. Geophys. Res. Space Sci. 118, 1922–1933 (2013). doi:10.1002/jgra.50161

    ADS  Google Scholar 

  • J.M. Raines, D. Schriver, S.C. Solomon, R.D. Starr, P. Trávníček, T.H. Zurbuchen, Mercury’s magnetosphere after MESSENGER’s first flyby. Science 321, 85–89 (2008). doi:10.1126/science.1159040

    ADS  Google Scholar 

  • J.M. Raines, J.A. Slavin, T.H. Zurbuchen, G. Gloeckler, B.J. Anderson, D.N. Baker, H. Korth, S.M. Krimigis, R.L. McNutt Jr., MESSENGER observations of the plasma environment near Mercury. Planet. Space Sci. 59, 2004–2015 (2011). doi:10.1016/j.pss.2011.02.004

    ADS  Google Scholar 

  • A. Raj, T. Phan, R.P. Lin, V. Angelopoulos, Wind survey of high-speed bulk flows and field-aligned beams in the near-Earth plasma sheet. J. Geophys. Res. 107(A12), 1419 (2002). doi:10.1029/2001JA007547

    Google Scholar 

  • L.C. Ray, Y.-J. Su, R.E. Ergun, P.A. Delamere, F. Bagenal, Current-voltage relation of a centrifugally confined plasma. J. Geophys. Res. 114, A04214 (2009). doi:10.1029/2008JA013969

    ADS  Google Scholar 

  • P.H. Reiff, J.L. Burch, T.W. Hill, Solar wind plasma injection at the dayside magnetospheric cusp. J. Geophys. Res. 82, 479–491 (1977). doi:10.1029/JA082i004p00479

    ADS  Google Scholar 

  • P.H. Reiff, R.W. Spiro, T.W. Hill, Dependence of polar cap potential drop on interplanetary parameters. J. Geophys. Res. 86, 7639–7648 (1981)

    ADS  Google Scholar 

  • E.C. Roelof, D.G. Sibeck, Magnetopause shape as a bivariate function of interplanetary magnetic field B z and solar wind dynamic pressure. J. Geophys. Res. 98(A12), 21421–21450 (1993). doi:10.1029/93JA02362

    ADS  Google Scholar 

  • E.C. Roelof et al., Energetic neutral atom image of a storm-time ring current. Geophys. Res. Lett. 14, 652–655 (1997)

    ADS  Google Scholar 

  • H. Rosenbauer, H. Gruenwaldt, M.D. Montgomery, G. Paschmann, N. Sckopke, Heos 2 plasma observations in the distant polar magnetosphere—the plasma mantle. J. Geophys. Res. 80, 2723–2737 (1975). doi:10.1029/JA080i019p02723

    ADS  Google Scholar 

  • A. Runov, R. Nakamura, W. Baumjohann, T.L. Zhang, M. Volwerk, H.-U. Eichelberger, A. Balogh, Cluster observation of a bifurcated current sheet. Geophys. Res. Lett. 30, 1036 (2003a)

    ADS  Google Scholar 

  • A. Runov et al., Current sheet structure near magnetic X-line observed by Cluster. Geophys. Res. Lett. 30(11), 1579 (2003b). doi:10.1029/2002GL016730

    ADS  Google Scholar 

  • A. Runov, V.A. Sergeev, R. Nakamura, W. Baumjohann, T.L. Zhang, Y. Asano, M. Volwerk, Z. Vörös, A. Balogh, H. Rème, Reconstruction of the magnetotail current sheet structure using multi-point Cluster measurements. Planet. Space Sci. 53, 237–243 (2005a)

    ADS  Google Scholar 

  • A. Runov, V.A. Sergeev, W. Baumjohann, R. Nakamura, S. Apatenkov, Y. Asano, M. Volwerk, Z. Voros, T.L. Zhang, A. Petrukovich, A. Balogh, J.-A. Sauvaud, B. Klecker, H. Reme, Electric current and magnetic field geometry in flapping magnetotail current sheets. Ann. Geophys. 23, 1391–1403 (2005b)

    ADS  Google Scholar 

  • A. Runov, V. Angelopoulos, M.I. Sitnov, V.A. Sergeev, J. Bonnell, J.P. McFadden, D. Larson, K.-H. Glassmeier, U. Auster, THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 36, L14106 (2009). doi:10.1029/2009GL038980

    ADS  Google Scholar 

  • A. Runov et al., Dipolarization fronts in the magnetotail plasma sheet. Planet. Space Sci. 59, 517 (2010)

    ADS  Google Scholar 

  • A. Runov, V. Angelopoulos, X.-Z. Zhou, X.-J. Zhang, S. Li, F. Plaschke, J. Bonnell, A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 116(A15), A05216 (2011). doi:10.1029/2010JA016316

    ADS  Google Scholar 

  • C.T. Russell, The dynamics of planetary magnetospheres. Planet. Space Sci. 49 (2001). doi:10.1016/S0032-0633(01)00017-4

  • C.T. Russell, K.I. Brody, Some remarks on the position and shape of the neutral sheet. J. Geophys. Res. 72(23), 6104–6106 (1967). doi:10.1029/JZ072i023p06104

    ADS  Google Scholar 

  • C.T. Russell, D.N. Baker, J.A. Slavin, The magnetosphere of Mercury, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. of Arizona Press, Tucson, 1988), pp. 514–561

    Google Scholar 

  • C.T. Russell, C.M. Jackman, H.Y. Wei, C. Bertucci, M.K. Dougherty, Titan’s influence on Saturnian substorm occurrence. Geophys. Res. Lett. 35, L12105 (2008). doi:10.1029/2008GL034080

    ADS  Google Scholar 

  • D.V. Sarafopoulos, E.T. Sarris, V. Angelopoulos, T. Yamamoto, S. Kokubun, Spatial structure of the plasma sheet boundary layer at distances greater than 180 R E as derived from energetic particle measurements on GEOTAIL. Ann. Geophys. 15, 1246–1256 (1997). doi:10.1007/s00585-997-1246-0

    ADS  Google Scholar 

  • F.L. Scarf, I.M. Green, G.L. Siscoe, D.S. Intriligator, D.D. McKibbin, J.H. Wolfe, Pioneer 8 electric field measurements in the distant geomagnetic tail. J. Geophys. Res. 75(16), 3167–3179 (1970). doi:10.1029/JA075i016p03167

    ADS  Google Scholar 

  • F.L. Scarf, D.A. Gurnett, W.S. Kurth, R.L. Poynter, Voyager 2 plasma wave observations at Saturn. Science 215, 587 (1982)

    ADS  Google Scholar 

  • K. Schindler, A selfconsistent theory of the tail of the magnetosphere, in Earth’s Magnetospheric Processes, ed. by B.M. McCormac (D. Reidel, Dordrecht, 1972), p. 200

    Google Scholar 

  • K. Schindler, A theory of the substorm mechanism. J. Geophys. Res. 79, 2803 (1974)

    ADS  Google Scholar 

  • K. Schindler, J. Birn, Models of two-dimensional embedded thin current sheets from Vlasov theory. J. Geophys. Res. 107(A8), 1193 (2002). doi:10.1029/2001JA000304

    Google Scholar 

  • D. Schmid, M. Volwerk, R. Nakamura, W. Baumjohann, M. Heyn, A statistical and event study of magnetotail dipolarization fronts. Ann. Geophys. 29(9), 1537–1547 (2011). doi:10.5194/angeo-29-1537-2011

    ADS  Google Scholar 

  • N. Sckopke, G. Paschmann, The plasma mantle. A survey of magnetotail boundary layer observations. J. Atmos. Terr. Phys. 40(3), 261–278 (1978). doi:10.1016/0021-9169(78)90044-2

    ADS  Google Scholar 

  • J.D. Scudder, E.C. Sittler Jr., H.S. Bridge, A survey of the plasma electron environment of Jupiter: a view from Voyager. J. Geophys. Res. 86(A10), 8157–8179 (1981). doi:10.1029/JA086iA10p08157

    ADS  Google Scholar 

  • L. Scurry, C.T. Russell, Proxy studies of energy transfer to the magnetosphere. J. Geophys. Res. 96, 9541–9548 (1991)

    ADS  Google Scholar 

  • K. Seki, T. Terasawa, M. Hirahara, T. Mukai, Quantification of tailward cold O+ beams in the lobe/mantle regions with geotail data: constraints on polar O+ outflows. J. Geophys. Res. 103, 29371–29382 (1998). doi:10.1029/98JA02463

    ADS  Google Scholar 

  • V.A. Sergeev, D.G. Mitchell, C.T. Russel, D.J. Williams, Structure of the tail plasma/current sheet at 11 R E and its changes in the course of a substorm. J. Geophys. Res. 98, 17345–17365 (1993)

    ADS  Google Scholar 

  • V.A. Sergeev, T.I. Pulkkinen, R.J. Pellinen, Coupled-mode scenario for the magnetospheric dynamics. J. Geophys. Res. 101, 13047–13065 (1996a)

    ADS  Google Scholar 

  • V.A. Sergeev, V. Angelopoulos, J.T. Gosling, C.A. Cattell, C.T. Russell, Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J. Geophys. Res. 101, 10817–10826 (1996b). doi:10.1029/96JA00460

    ADS  Google Scholar 

  • V. Sergeev, V. Angelopoulos, C. Carlson, P. Sutcliffe, Current sheet measurements within a flapping plasma sheet. J. Geophys. Res. 103, 9177–9188 (1998)

    ADS  Google Scholar 

  • V.A. Sergeev, K. Liou, C.-I. Meng, P.T. Newell, M. Brittnacher, G. Parks, G.D. Reeves, Development of auroral streamers in association with localized impulsive injections to the inner magnetotail. Geophys. Res. Lett. 26(3), 417–420 (1999). doi:10.1029/1998GL900311

    ADS  Google Scholar 

  • V. Sergeev, A. Runov, W. Baumjohann, R. Nakamura, T.L. Zhang, M. Volwerk, A. Balogh, H. Reme, J.A. Sauvaud, M. Andre, B. Klecker, Current sheet flapping motion and structure observed by Cluster. Geophys. Res. Lett. 30, 1327 (2003)

    ADS  Google Scholar 

  • V.A. Sergeev, V. Angelopoulos, S. Apatenkov, J. Bonnell, R. Ergun, R. Nakamura, J. McFadden, D. Larson, A. Runov, Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett. 36, L21105 (2009). doi:10.1029/2009GL040658

    ADS  Google Scholar 

  • V. Sergeev, Y. Nishimura, M. Kubyshkina, V. Angelopoulos, R. Nakamura, H. Singer, Magnetospheric location of the equatorward prebreakup arc. J. Geophys. Res. 117, A01212 (2012a). doi:10.1029/2011JA017154

    ADS  Google Scholar 

  • V.A. Sergeev, V. Angelopoulos, R. Nakamura, Recent advances in understanding substorm dynamics. Geophys. Res. Lett. 39, L05101 (2012b). doi:10.1029/2012GL050859

    ADS  Google Scholar 

  • S. Sharma, R. Nakamura, A. Runov, E.E. Grigorenko, H. Hasegawa, M. Hoshino, P. Louarn, C.J. Owen, A. Peturkovich, J.-A. Sauvaud, V.S. Semenov, V.A. Sergeev, J.A. Slavin, B.U.O. Sonnerup, L.M. Zelenyi, G. Fruit, S. Haaland, H. Malova, K. Snekvik, Transient and localized processes in the magnetotail: a review. Ann. Geophys. 26, 955–1006 (2008)

    ADS  Google Scholar 

  • J.K. Shi, Z.W. Cheng, T.L. Zhang, M. Dunlop, Z.X. Liu, K. Torkar, A. Fazakerley, E. Lucek, H. Rème, I. Dandouras, A.T.Y. Lui, Z.Y. Pu, A.P. Walsh, M. Volwerk, A.D. Lahiff, M.G.G.T. Taylor, A. Grocott, L.M. Kistler, M. Lester, C. Mouikis, C. Shen, South-north asymmetry of field-aligned currents in the magnetotail observed by Cluster. J. Geophys. Res. 115(A14), A07228 (2010). doi:10.1029/2009JA014446

    ADS  Google Scholar 

  • J.H. Shue, J.K. Chao, H.C. Fu, C.T. Russell, P. Song, K.K. Khurana, H.J. Singer, A new functional form to study the solar wind control of the magnetopause size and shape. J. Geophys. Res. 102(A5), 9497–9511 (1997)

    ADS  Google Scholar 

  • D.G. Sibeck, G.L. Siscoe, J.A. Slavin, E.J. Smith, S.J. Bame, F.L. Scarf, Magnetotail flux ropes. Geophys. Res. Lett. 11, 1090 (1984)

    ADS  Google Scholar 

  • D.G. Sibeck, R.E. Lopez, E.C. Roelof, Solar wind control of the magnetopause shape, location, and motion. J. Geophys. Res. 96(A4), 5489–5495 (1991). doi:10.1029/90JA02464

    ADS  Google Scholar 

  • S. Simon, A. Wennmacher, F.M. Neubauer, C.L. Bertucci, H. Kriegel, J. Saur, C.T. Russell, M.K. Dougherty, Titan’s highly dynamic magnetic environment: a systematic survey of Cassini magnetometer observations from flybys TA-T62. Planet. Space Sci. 58, 1230–1251 (2010). doi:10.1016/j.pss.2010.04.021

    ADS  Google Scholar 

  • G. Siscoe, L. Christopher, Variations in the solar wind stand-off distance at Mercury. Geophys. Res. Lett. 2, 158 (1975)

    ADS  Google Scholar 

  • G.L. Siscoe, T.S. Huang, Polar cap inflation and deflation. J. Geophys. Res. 90, 543–547 (1985). doi:10.1029/JA090iA01p00543

    ADS  Google Scholar 

  • G.L. Siscoe, N.F. Ness, C.M. Yeates, Substorms on Mercury? J. Geophys. Res. 80(31), 4359–4363 (1975). doi:10.1029/JA080i031p04359

    ADS  Google Scholar 

  • G.L. Siscoe, N.U. Crooker, K.D. Siebert, Transpolar potential saturation: roles of region 1 current system and solar wind ram pressure. J. Geophys. Res. 107(A10), 1321 (2002). doi:10.1029/2001JA009176

    Google Scholar 

  • G. Siscoe, J. Raeder, A.J. Ridley, Transpolar potential saturation models compared. J. Geophys. Res. 109, A09203 (2004). doi:10.1029/2003JA010318

    ADS  Google Scholar 

  • M.I. Sitnov, L.M. Zelenyi, H.V. Malova, A.S. Sharma, Thin current sheet embedded within a thicker plasma sheet: self-consistent kinetic theory. J. Geophys. Res. 105(A6), 13029–13043 (2000). doi:10.1029/1999JA000431

    ADS  Google Scholar 

  • M.I. Sitnov, P.N. Guzdar, M. Swisdak, On the formation of a plasma bubble. Geophys. Res. Lett. 32, L16103 (2005). doi:10.1029/2005GL023585

    ADS  Google Scholar 

  • M.I. Sitnov, M. Swisdak, A.V. Divin, Dipolarization fronts as a signature of transient reconnection in the magnetotail. J. Geophys. Res. 114(A13), A04202 (2009). doi:10.1029/2008JA013980

    ADS  Google Scholar 

  • J.A. Slavin, Mercury’s magnetosphere, comparative magnetospheres. Adv. Space Res. 33(11), 1859–1874 (2004), ed. by X. Blanco-Cano, C.T. Russell

    ADS  Google Scholar 

  • J.A. Slavin, B.T. Tsurutani, E.J. Smith, D.E. Jones, D.G. Sibeck, Average configuration of the distant (<220 R e ) magnetotail: initial ISEE-3 magnetic field results. Geophys. Res. Lett. 10(10), 973–976 (1983). doi:10.1029/GL010i010p00973

    ADS  Google Scholar 

  • J.A. Slavin, E.J. Smith, B.T. Thomas, Large scale temporal and radial gradients in the IMF: Helios 1, 2, ISEE-3, and Pioneer 10, 11. Geophys. Res. Lett. 11, 279 (1984a)

    ADS  Google Scholar 

  • J.A. Slavin, E.J. Smith, B.T. Tsurutani, D.G. Sibeck, H.J. Singer, D.N. Baker, J.T. Gosling, E.W. Hones Jr., F.L. Scarf, Substorm-associated traveling compression regions in the distant tail: ISEE 3 geotail observations. Geophys. Res. Lett. 11, 657 (1984b)

    ADS  Google Scholar 

  • J.A. Slavin, E.J. Smith, J.R. Spreiter, S.S. Stahara, Solar wind flow about the outer planets: gas dynamic modeling of the Jupiter and Saturn bow shocks. J. Geophys. Res. 90(A7), 6275–6286 (1985a)

    ADS  Google Scholar 

  • J.A. Slavin, E.J. Smith, D.G. Sibeck, D.N. Baker, R.D. Zwickl, S.-I. Akasofu, An ISEE-3 study of average and substorm conditions in the distant magnetotail. J. Geophys. Res. 90, 10875 (1985b)

    ADS  Google Scholar 

  • J.A. Slavin et al., CDAW-8 observations of plasmoid signatures in the geomagnetic tail: an assessment. J. Geophys. Res. 94, 15153 (1989)

    ADS  Google Scholar 

  • J.A. Slavin, M.F. Smith, E.L. Mazur, D.N. Baker, E.W. Hones Jr., T. Iyemori, E.W. Greenstadt, ISEE 3 observations of traveling compression regions in the Earth’s magnetotail. J. Geophys. Res. 98(A9), 15425–15446 (1993). doi:10.1029/93JA01467

    ADS  Google Scholar 

  • J.A. Slavin, C.J. Owen, M.M. Kuznetsova, M. Hesse, ISEE 3 observations of plasmoids with flux rope magnetic topologies. Geophys. Res. Lett. 22(15), 2061–2064 (1995)

    ADS  Google Scholar 

  • J.A. Slavin, R.P. Lepping, J. Gjerloev, D.H. Fairfield, M. Hesse, C.J. Owen, M.B. Moldwin, T. Nagai, A. Ieda, T. Mukai, Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res. 108(A1), 1015 (2003). doi:10.1029/2002JA009557

    Google Scholar 

  • J.A. Slavin, E.I. Tanskanen, M. Hesse, C.J. Owen, M.W. Dunlop, S. Imber, E.A. Lucek, A. Balogh, K.-H. Glassmeier, Cluster observations of traveling compression regions in the near-tail. J. Geophys. Res. 110, A06207 (2005). doi:10.1029/2004JA010878

    ADS  Google Scholar 

  • J.A. Slavin, S.M. Krimigis, M.H. Acuña, B.J. Anderson, D.N. Baker, P.L. Koehn, H. Korth, S. Livi, B.H. Mauk, S.C. Solomon, T.H. Zurbuchen, MESSENGER: exploring Mercury’s magnetosphere. Space. Sci. Rev. (2007). doi:10.1007/s11214-007-9154-x

    Google Scholar 

  • J.A. Slavin, M.H. Acuna, B.J. Anderson, D.N. Baker, M. Benna, G. Gloeckler, R.E. Gold, G.C. Ho, R.M. Killen, H. Korth, S.M. Krimigis, R.L. McNutt Jr., L.R. Nittler, J.M. Slavin et al., MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science 324, 606–610 (2009). doi:10.1126/science.1172011

    ADS  Google Scholar 

  • J.A. Slavin et al., MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science 329, 665–668 (2010). doi:10.1126/science.1188067

    ADS  Google Scholar 

  • J.A. Slavin et al., MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res. 117, A01215 (2012a). doi:10.1029/2011JA016900

    ADS  Google Scholar 

  • J.A. Slavin, S.M. Imber, G.A. DiBraccio, T. Sundberg, S.A. Boardsen, B.J. Anderson, H. Korth, D.N. Baker, R.L. McNutt, S.C. Solomon, MESSENGER observations of magnetotail dynamics at Mercury. Geophys. Res. Abstr. 14, EGU2012-3817-3 (2012b)

    Google Scholar 

  • E.J. Smith, Radial gradients in the interplanetary magnetic field between 1.0 and 4.3 AU: Pioneer 10, in Solar Wind Three, ed. by C.T. Russell (University of California Press, Los Angeles, 1974)

    Google Scholar 

  • K. Snekvik, S. Haaland, N. Østgaard, H. Hasegawa, R. Nakamura, T. Takada, L. Juusola, O. Amm, F. Pitout, H. Rème, B. Klecker, E.A. Lucek, Cluster observations of a field aligned current at the dawn flank of a bursty bulk flow. Ann. Geophys. 25(6), 1405–1415 (2007). doi:10.5194/angeo-25-1405-2007

    ADS  Google Scholar 

  • K. Snekvik, E. Tanskanen, N. Østgaard, L. Juusola, K. Laundal, E.I. Gordeev, A.L. Borg, Changes in the magnetotail configuration before near-Earth reconnection. J. Geophys. Res. 117, A02219 (2012). doi:10.1029/2011JA017040

    ADS  Google Scholar 

  • S.C. Solomon et al., The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49, 1445–1465 (2001). doi:10.1016/S0032-0633(01)00085-X

    ADS  Google Scholar 

  • D.J. Southwood, M.G. Kivelson, Magnetospheric interchange instability. J. Geophys. Res. 92(A1), 109–116 (1987). doi:10.1029/JA092iA01p00109

    ADS  Google Scholar 

  • D.J. Southwood, M.G. Kivelson, Magnetospheric interchange motions. J. Geophys. Res. 94(A1), 299–308 (1989). doi:10.1029/JA094iA01p00299

    ADS  Google Scholar 

  • T.W. Speiser, Particle trajectories in model current sheets: 1. Analytical solutions. J. Geophys. Res. 70, 4219–4226 (1965)

    ADS  Google Scholar 

  • T.S. Stallard, S. Miller, S.W.H. Cowley, E.J. Bunce, Jupiter’s polar ionospheric flows: measured intensity and velocity variations poleward of the main auroral oval. Geophys. Res. Lett. 30(5), 1221 (2003). doi:10.1029/2002GL016031

    ADS  Google Scholar 

  • Š. Štverák, M. Maksimovic, P.M. Trávníček, E. Marsch, A.N. Fazakerley, E.E. Scime, Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses observations. J. Geophys. Res. 114, A05104 (2009). doi:10.1029/2008JA013883

    ADS  Google Scholar 

  • T. Sundberg, S.A. Boardsen, J.A. Slavin, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, S.C. Solomon, MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res. 117, A04216 (2012a). doi:10.1029/2011JA017268

    ADS  Google Scholar 

  • T. Sundberg et al., MESSENGER observations of dipolarization events in Mercury’s magnetotail. J. Geophys. Res. 117, A00M03 (2012b). doi:10.1029/2012JA017756

    ADS  Google Scholar 

  • W.-L. Teh, R. Nakamura, H. Karimabadi, W. Baumjohann, T.L. Zhang, Correlation of core field polarity of magnetotail flux ropes with the IMF B y : reconnection guide field dependency. J. Geophys. Res. 119, 2933–2944 (2014). doi:10.1002/2013JA019454

    Google Scholar 

  • N. Thomas, F. Bagenal, T.W. Hill, J.K. Wilson, The Io neutral clouds and plasma torus, in Jupiter: Planet, Satellites, Magnetosphere, ed. by Bagenal, Dowling, McKinnon (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • M.F. Thomsen, R.J. Wilson, R.L. Tokar, D.B. Reisenfeld, C.M. Jackman, Cassini/CAPS observations of duskside tail dynamics at Saturn. J. Geophys. Res. 118, 5767–5781 (2013). doi:10.1002/jgra.50552

    Google Scholar 

  • P.M. Travnicek et al., Mercury’s magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field: hybrid simulation results. Icarus 209(1), 11–22 (2010). doi:10.1016/j.icarus.2010.01.008

    ADS  Google Scholar 

  • N.A. Tsyganenko, D.H. Fairfield, Global shape of the magnetotail current sheet as derived from geotail and polar data. J. Geophys. Res. 109, A03218 (2004). doi:10.1029/2003JA010062

    ADS  Google Scholar 

  • V.M. Vasyliunas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge Univ. Press, Cambridge, 1983), pp. 395–453

    Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115, A06219 (2010). doi:10.1029/2009JA015098

    ADS  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. 116, A03220 (2011). doi:10.1029/2010JA016148

    ADS  Google Scholar 

  • M.F. Vogt, C.M. Jackman, J.A. Slavin, E.J. Bunce, S.W.H. Cowley, M.G. Kivelson, K.K. Khurana, Structure and statistical properties of plasmoids in Jupiter’s magnetotail. J. Geophys. Res. 119, 821–843 (2014). doi:10.1002/2013JA019393

    Google Scholar 

  • M. Volwerk, J. Berchem, Y.V. Bogdanova, O.D. Constantinescu, M.W. Dunlop, J.P. Eastwood, P. Escoubet, A.N. Fazakerley, H. Frey, H. Hasegawa, B. Lavraud, E.V. Panov, C. Shen, J.K. Shi, M.G.G.T. Taylor, J. Wang, J.A. Wild, Q.H. Zhang, O. Amm, J.M. Weygand, Interplanetary magnetic field rotations followed from L1 to the ground: the response of the Earth’s magnetosphere as seen by multi-spacecraft and ground-based observations. Ann. Geophys. 29, 1549–1569 (2011)

    ADS  Google Scholar 

  • M. Volwerk, N. André, C.S. Arridge, C.M. Jackman, X. Jia, S.E. Milan, A. Radioti, M.F. Vogt, A.P. Walsh, R. Nakamura, A. Masters, C. Forsyth, Comparative magnetotail flapping: an overview of selected events at Earth, Jupiter and Saturn. Ann. Geophys. 31, 817–833 (2013). doi:10.5194/angeo-31-817-2013

    ADS  Google Scholar 

  • G.R. Voots, D.A. Gurnett, S.-I. Akasofu, Auroral kilometric radiation as an indicator of auroral magnetic disturbances. J. Geophys. Res. 82, 2259–2266 (1977)

    ADS  Google Scholar 

  • A.P. Walsh, C. Forsyth, Cluster observations of plasma bubbles, BBFs and their wakes, in The Dynamic Magnetosphere, ed. by W. Liu, M. Fujimoto. IAGA Special Sopron Book Series, vol. 3 (Springer, Dordrecht, 2011), pp. 117–124. doi:10.1007/978-94-007-0501-2_6

    Google Scholar 

  • A.P. Walsh, A.N. Fazakerley, A.D. Lahiff, M. Volwerk, A. Grocott, M. Dunlop, T. Lui, L. Kistler, M. Lester, C. Mouikis, Z. Pu, C. Shen, J. Shi, M.G. Taylor, E. Lucek, T.L. Zhang, I. Dandouras, Cluster and Double Star multipoint observations of a plasma bubble. Ann. Geophys. 27, 725–743 (2009). doi:10.5194/angeo-27-725-2009

    ADS  Google Scholar 

  • A.P. Walsh, A.N. Fazakerley, C. Forsyth, C.J. Owen, M.G.G.T. Taylor, I.J. Rae, Sources of electron pitch angle anisotropy in the magnetotail plasma sheet. J. Geophys. Res. 118 (2013a). doi:10.1002/jgra.50553

  • A.P. Walsh, C.S. Arridge, A. Masters, G.R. Lewis, A.N. Fazakerley, G.H. Jones, C.J. Owen, A.J. Coates, An indication of the existence of a solar wind strahl at 10 AU. Geophys. Res. Lett. 40, 2495–2499 (2013b). doi:10.1002/grl.50529

    ADS  Google Scholar 

  • Y.C. Wang, J. Mueller, U. Motschmann, W.H. Ip, A hybrid simulation of Mercury’s magnetosphere for the MESSENGER encounters in year 2008. Icarus 209(1), 46–52 (2010). doi:10.1016/j.icarus.2010.05.020

    ADS  Google Scholar 

  • H. Wiechen, K. Schindler, Quasi-static theory of the Earth’s magnetotail, including the far tail. J. Geophys. Res. 93, 5922 (1988)

    ADS  Google Scholar 

  • S. Wing, J.R. Johnson, P.T. Newell, C.-I. Meng, Dawn-dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet. J. Geophys. Res. 110, A08205 (2005). doi:10.1029/2005JA011086

    ADS  Google Scholar 

  • R.M. Winglee, E.M. Harnett, A. Kidder, D. Snowden, Supplying the Io plasma torus: local versus extended plasma sources, Fall AGU Abstract SM11C-03, 2009

  • J.D. Winningham, W.J. Heikkila, Polar cap auroral electron fluxes observed with Isis 1. J. Geophys. Res. 79, 949–957 (1974). doi:10.1029/JA079i007p00949

    ADS  Google Scholar 

  • R.M. Winslow, B.J. Anderson, C.L. Johnson, J.A. Slavin, H. Korth, M.E. Purucker, D.N. Baker, S.C. Solomon, Mercury’s magnetopause and bow shock from MESSENGER magnetometer observations. J. Geophys. Res. 118, 2213–2227 (2013). doi:10.1002/jgra.50237

    Google Scholar 

  • J. Woch, N. Krupp, A. Lagg, Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett. 29(7), 1138 (2002). doi:10.1029/2001GL014080

    ADS  Google Scholar 

  • R.A. Wolf, Y. Wan, X. Xing, J.-C. Zhang, S. Sazykin, Entropy and plasma sheet transport. J. Geophys. Res. 114(A13), A00D05 (2009). doi:10.1029/2009JA014044

    ADS  Google Scholar 

  • R.A. Wolf, C.X. Chen, F.R. Toffoletto, Thin filament simulations for Earth’s plasma sheet: interchange oscillations. J. Geophys. Res. 117(A16), A02215 (2012a). doi:10.1029/2011JA016971

    ADS  Google Scholar 

  • R.A. Wolf, C.X. Chen, F.R. Toffoletto, Thin filament simulations for Earth’s plasma sheet: tests of validity of the quasi-static convection approximation. J. Geophys. Res. 117(A16), A02216 (2012b). doi:10.1029/2011JA016972

    ADS  Google Scholar 

  • C.S. Wu, L.C. Lee, A theory of the terrestrial kilometric radiations. Astrophys. J. 230, 621–626 (1979)

    ADS  Google Scholar 

  • J.R. Wygant, R.B. Torbert, F.S. Mozer, Comparison of S3-3 polar cap potential with the interplanetary magnetic field and models of magnetospheric reconnection. J. Geophys. Res. 88, 5727–5735 (1983)

    ADS  Google Scholar 

  • J.N. Yates, N. Achilleos, P. Guio, Response of the Jovian thermosphere to a transient ‘pulse’ in solar wind pressure. Planet. Space Sci. 91, 27–44 (2014). doi:10.1016/j.pss.2013.11.009

    ADS  Google Scholar 

  • D. Young, Ion and neutral mass spectrometry, in Encyclopedia of Planetary Sciences, ed. by J.A. Shirley, R.W. Fairbridge (Van Nostrand Reinhold, New York, 1997a)

    Google Scholar 

  • D. Young, Space plasma particle instrumentation and the new paradigm: faster, cheaper, better, in Measurement Techniques in Space Plasmas: Particles, ed. by D.T. Young, R.F. Pfaff, J.E. Borovsky. AGU Monograph, vol. 102 (American Geophysical Union, Washington, 1997b)

    Google Scholar 

  • P. Zarka, Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103(E9), 20159–20194 (1998). doi:10.1029/98JE01323

    ADS  Google Scholar 

  • P. Zarka, L. Lamy, B. Cecconi, R. Prangé, H.O. Rucker, Modulation of Saturn’s radio clock by solar wind speed. Nature 450, 265–267 (2007)

    ADS  Google Scholar 

  • L.M. Zelenyi, H.V. Malova, V.Y. Popov, D. Delcourt, A.S. Sharma, Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy. Nonlinear Process. Geophys. 11, 579–587 (2004)

    ADS  Google Scholar 

  • E. Zesta, Y. Shi, E. Donovan, E. Spanswick, L.R. Lyons, V. Angelopoulos, J.P. McFadden, C.W. Carlson, H.-U. Auster, S. Mende, M.A. McCready, C.J. Heinselman, E. Kendall, R. Doe, Ionospheric convection signatures of tail fast flows during substorms and poleward boundary intensifications (PBI). Geophys. Res. Lett. 38, L08105 (2011). doi:10.1029/2011GL046758

    ADS  Google Scholar 

  • T.L. Zhang, W. Baumjohann, R. Nakamura, A. Balogh, K.-H. Glassmeier, A wavy twisted neutral sheet observed by Cluster. Geophys. Res. Lett. 29, 1899 (2002). doi:10.1029/2002GL015544

    ADS  Google Scholar 

  • T.L. Zhang, W. Baumjohann, R. Nakamura, A. Runov, M. Volwerk, Y. Asano, Z. Vörös, H.-U. Eichelberger, V. Sergeev, J.K. Shi, A. Balogh, A statistical survey of the magnetotail current sheet. Adv. Space Res. 38, 1834–1837 (2006)

    ADS  Google Scholar 

  • M. Zhou et al., Observation of waves near lower hybrid frequency in the reconnection region with thin current sheet. J. Geophys. Res. 114, A02216 (2009). doi:10.1029/2008JA013427

    ADS  Google Scholar 

  • X.-Z. Zhou, V. Angelopoulos, V.A. Sergeev, A. Runov, Accelerated ions ahead of earthward propagating dipolarization fronts. J. Geophys. Res. 115(A14), A00I03 (2010). doi:10.1029/2010JA015481

    ADS  Google Scholar 

  • X.-Z. Zhou, V. Angelopoulos, V.A. Sergeev, A. Runov, On the nature of precursor flows upstream of advancing dipolarization fronts. J. Geophys. Res. 116(A15), A03222 (2011). doi:10.1029/2010JA016165

    ADS  Google Scholar 

  • X.-Z. Zhou, V. Angelopoulos, A. Runov, J. Liu, Y.S. Ge, Emergence of the active magnetotail plasma sheet boundary from transient, localized ion acceleration. J. Geophys. Res. 117, A10216 (2012). doi:10.1029/2012JA018171

    ADS  Google Scholar 

  • B. Zieger, K.C. Hansen, T.I. Gombosi, D.L. DeZeeuw, Periodic plasma escape from the mass-loaded Kronian magnetosphere. J. Geophys. Res. 115 (2010). doi:10.1029/2009JA014951

  • T.H. Zurbuchen, J.M. Raines, G. Gloeckler, S.M. Krimigis, J.A. Slavin, P.L. Koehn, R.M. Killen, A.L. Sprague, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of the compositions of Mercury’s ionized exosphere and plasma environment. Science 321, 90–92 (2008)

    ADS  Google Scholar 

  • T.H. Zurbuchen, J.M. Raines, J.A. Slavin, D.J. Gershman, J.A. Gilbert, G. Gloeckler, B.J. Anderson, D.N. Baker, H. Korth, S.M. Krimigis, M. Sarantos, D. Schriver, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science 30(333), 1862–1865 (2011). doi:10.1126/science.1211302

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the generous support of the International Space Science Institute. All authors are members of ISSI team number 195, “Investigating the Dynamics of Planetary Magnetotails”. CMJ’s work at UCL was funded through a Leverhulme Trust Early Career Fellowship and a Royal Astronomical Society Fellowship (subsequently at University of Southampton). CMJ acknowledges useful discussion with Edward Smith. CSA was funded through a Royal Society University Research Fellowship and an STFC Postdoctoral fellowship. JAS is funded by the MESSENGER project which is supported by the NASA Discovery Program under contracts NASW-00002 to the Carnegie Institution of Washington and NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory. AK is supported by NASA grant NNX07AJ80G to the University of Washington. AR is funded by the Belgian Fund for Scientific Research (FNRS). XJ is supported by the NASA Cassini Data Analysis Program through grant NNX12AK34G and by the NASA Cassini mission under contract 1409449 with JPL. MPF was supported by the Polar Science for Planet Earth Programme at the British Antarctic Survey. MFV’s work at the University of Leicester was supported by the Science and Technology Facilities Council (STFC) Consolidated grant ST/K001000/1. JB acknowledges support through NASA grants NNG08EJ63I, NNH11AQ42I, NNH10A045I, and NSF grant 1203711. Most of JB’s work was performed under the auspices of the US Department of Energy, while JB was a Staff Member at Los Alamos. CMJ would like to acknowledge the comments of two reviewers who helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Jackman.

Appendix:  Co-ordinate Systems

Appendix:  Co-ordinate Systems

Here we define three co-ordinate systems used throughout this paper:

RTN::

The most commonly used co-ordinate system for the IMF is RTN, a right-handed system referenced to the Sun’s spin axis, in which B R is directed radially outward from the Sun, B T is the azimuthal component positive in the direction of planetary motion, and B N is the ‘minus theta’ component positive northward in the solar equatorial plane

Geocentric Solar Magnetospheric (GSM)::

The X axis points from Earth to the Sun, the XZ plane contains the planetary magnetic dipole axis, and the Y component completes the right-handed set and is positive towards dusk.

Jovicentric Solar Orbital (JSO)::

This system was employed by Khurana and Schwarzl (2005) to study structures at Jupiter that are influenced by the solar wind. The X axis points from Jupiter to the Sun and the Z axis is perpendicular to the orbital plane of Jupiter. The Y axis completes the right-handed set and is positive towards dusk. The coordinate system is analogous to Geocentric Solar Ecliptic (GSE) coordinates but generalised for a body that does not orbit the Sun in the ecliptic plane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackman, C.M., Arridge, C.S., André, N. et al. Large-Scale Structure and Dynamics of the Magnetotails of Mercury, Earth, Jupiter and Saturn. Space Sci Rev 182, 85–154 (2014). https://doi.org/10.1007/s11214-014-0060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0060-8

Keywords

Navigation