Space Science Reviews

, Volume 170, Issue 1, pp 95–166

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

  • S. Maurice
  • R. C. Wiens
  • M. Saccoccio
  • B. Barraclough
  • O. Gasnault
  • O. Forni
  • N. Mangold
  • D. Baratoux
  • S. Bender
  • G. Berger
  • J. Bernardin
  • M. Berthé
  • N. Bridges
  • D. Blaney
  • M. Bouyé
  • P. Caïs
  • B. Clark
  • S. Clegg
  • A. Cousin
  • D. Cremers
  • A. Cros
  • L. DeFlores
  • C. Derycke
  • B. Dingler
  • G. Dromart
  • B. Dubois
  • M. Dupieux
  • E. Durand
  • L. d’Uston
  • C. Fabre
  • B. Faure
  • A. Gaboriaud
  • T. Gharsa
  • K. Herkenhoff
  • E. Kan
  • L. Kirkland
  • D. Kouach
  • J.-L. Lacour
  • Y. Langevin
  • J. Lasue
  • S. Le Mouélic
  • M. Lescure
  • E. Lewin
  • D. Limonadi
  • G. Manhès
  • P. Mauchien
  • C. McKay
  • P.-Y. Meslin
  • Y. Michel
  • E. Miller
  • H. E. Newsom
  • G. Orttner
  • A. Paillet
  • L. Parès
  • Y. Parot
  • R. Pérez
  • P. Pinet
  • F. Poitrasson
  • B. Quertier
  • B. Sallé
  • C. Sotin
  • V. Sautter
  • H. Séran
  • J. J. Simmonds
  • J.-B. Sirven
  • R. Stiglich
  • N. Striebig
  • J.-J. Thocaven
  • M. J. Toplis
  • D. Vaniman
Article

DOI: 10.1007/s11214-012-9912-2

Cite this article as:
Maurice, S., Wiens, R.C., Saccoccio, M. et al. Space Sci Rev (2012) 170: 95. doi:10.1007/s11214-012-9912-2

Abstract

ChemCam is a remote sensing instrument suite on board the “Curiosity” rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (∼90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

Keywords

MarsSpectroscopyLIBSInstrumentsPlanetary surfacesChemical composition

List

ADC

Analog-to-Digital Converter

APXS

Alpha Proton X-ray Spectrometer

AZ

Azimuth (ref. Mast pointing direction)

BU

Body-Unit

CCCT

ChemCam Calibration Targets

CTF

Contrast Transfer Function

CW

Continuous Wavelength (laser)

DOF

Depth of Field

DPU

Digital Processing Unit

EBOX

Electronics Box

EL

Elevation (ref. Mast Pointing direction)

FOV

Field of View

FPGA

Field Programmable Gate Array

GSE

Ground Support Equipment

LIBS

Laser Induced Breakdown Spectroscopy

MER

Mars Exploration Rovers

MSL

Mars Science Laboratory

MTF

Modulation Transfer Function

MU

Mast-Unit

OBOX

Optical Box

R

Distance to target

RCE

Rover Compute Element (∼ rover DPU)

RMI

Remote micro-imager

ROI

Region of Interest

RWEB

Remote Warm Electronics Box

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • S. Maurice
    • 1
  • R. C. Wiens
    • 2
  • M. Saccoccio
    • 3
  • B. Barraclough
    • 2
  • O. Gasnault
    • 1
  • O. Forni
    • 1
  • N. Mangold
    • 4
  • D. Baratoux
    • 1
  • S. Bender
    • 2
  • G. Berger
    • 1
  • J. Bernardin
    • 2
  • M. Berthé
    • 5
  • N. Bridges
    • 6
  • D. Blaney
    • 7
  • M. Bouyé
    • 8
  • P. Caïs
    • 9
  • B. Clark
    • 10
  • S. Clegg
    • 2
  • A. Cousin
    • 1
  • D. Cremers
    • 11
  • A. Cros
    • 1
  • L. DeFlores
    • 7
  • C. Derycke
    • 12
  • B. Dingler
    • 2
  • G. Dromart
    • 13
  • B. Dubois
    • 8
  • M. Dupieux
    • 1
  • E. Durand
    • 12
  • L. d’Uston
    • 1
  • C. Fabre
    • 14
  • B. Faure
    • 3
  • A. Gaboriaud
    • 3
  • T. Gharsa
    • 1
  • K. Herkenhoff
    • 15
  • E. Kan
    • 7
  • L. Kirkland
    • 16
  • D. Kouach
    • 8
  • J.-L. Lacour
    • 17
  • Y. Langevin
    • 5
  • J. Lasue
    • 1
    • 2
  • S. Le Mouélic
    • 4
  • M. Lescure
    • 24
  • E. Lewin
    • 18
  • D. Limonadi
    • 7
  • G. Manhès
    • 19
  • P. Mauchien
    • 17
  • C. McKay
    • 20
  • P.-Y. Meslin
    • 1
  • Y. Michel
    • 3
  • E. Miller
    • 7
  • H. E. Newsom
    • 21
  • G. Orttner
    • 1
  • A. Paillet
    • 3
  • L. Parès
    • 1
  • Y. Parot
    • 1
  • R. Pérez
    • 3
  • P. Pinet
    • 1
  • F. Poitrasson
    • 22
  • B. Quertier
    • 9
  • B. Sallé
    • 1
    • 17
  • C. Sotin
    • 4
    • 7
  • V. Sautter
    • 23
  • H. Séran
    • 1
  • J. J. Simmonds
    • 7
  • J.-B. Sirven
    • 17
  • R. Stiglich
    • 2
  • N. Striebig
    • 8
  • J.-J. Thocaven
    • 1
  • M. J. Toplis
    • 1
  • D. Vaniman
    • 2
    • 25
  1. 1.Institut de Recherche en Astrophysique et PlanétologieUniv. Paul Sabatier-CNRS-Obs. Midi-PyrénéesToulouseFrance
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Centre National d’Etudes SpatialesToulouseFrance
  4. 4.Laboratoire de Planétologie et GéodynamiqueUniversité Nantes-CNRSNantesFrance
  5. 5.Institut d’Astrophysique SpatialeUniversité Paris Sud & CNRSOrsayFrance
  6. 6.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  7. 7.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  8. 8.Groupe d’Instrumentation ScientifiqueObservatoire Midi-PyrénéesToulouseFrance
  9. 9.Laboratoire d’Astrophysique de BordeauxUniv. Bordeaux, CNRSFloiracFrance
  10. 10.Space Science InstituteBoulderUSA
  11. 11.Applied Research AssociatesAlbuquerqueUSA
  12. 12.Thalès Optronique SaElancourtFrance
  13. 13.Laboratoire de Géologie de LyonUniversité de Lyon-ENS de LyonLyonFrance
  14. 14.Géologie et Gestion des Ressources Minérales et énergétiquesUniv. Lorraine-CNRSVandœuvreFrance
  15. 15.U.S. Geological SurveyAstrogeology Science CenterFlagstaffUSA
  16. 16.Lunar and Planetary InstituteHoustonUSA
  17. 17.Department of Physical ChemistryCEA, DENGif-sur-YvetteFrance
  18. 18.Institut des Sciences de la TerreUniversité Grenoble 1-CNRSGrenobleFrance
  19. 19.Institut de Physique du GlobeParisFrance
  20. 20.NASA Ames Research CenterMountain ViewUSA
  21. 21.University of New MexicoAlbuquerqueUSA
  22. 22.Géosciences Environnement ToulouseCNRSToulouseFrance
  23. 23.Lab. de Minéralogie et Cosmochimie, CNRSMuseum National d’Histoire NaturelleParisFrance
  24. 24.Laboratoire d’Analyse et d’Architecture des SystèmesCNRSToulouseFrance
  25. 25.Planetary Science InstituteTucsonUSA