Skip to main content
Log in

Discharges in the Stratosphere and Mesosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In the present paper salient features of discharges in the stratosphere and mesosphere (namely sprites, halos, blue starters, blue jets, gigantic jets and elves), are discussed. The electrostatic field due to charge imbalance during lightning processes may lead to stratospheric/mesospheric discharges either through the conventional breakdown based on streamers and leaders or relativistic runaway mechanism. Most (not all) of the observed features of sprites, halos and jets are explained by this processes. Development and evolution of streamers are based on the local transient electrostatic field and available ambient electron density which dictate better probability in favor of positive cloud-to-ground discharges, and thus explains the polarity asymmetry in triggering sprites and streamers. Elves are generated by electromagnetic pulse radiated by return stroke currents of cloud-to-ground/inter-cloud discharges. Generation of the both donut and pancake shape elves are explained. Electrodynamic features of thunderstorms associated with stratospheric/mesospheric discharges are summarized including current and charge moment associated with relevant cloud-to-ground discharges. The hypothesis relating tropospheric generated gravity waves and mesospheric discharges are also discussed. Finally some interesting problems are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • T. Adachi, H. Fukunishi, Y. Takahashi, M. Sato, Roles of the EMP and QE field in the generation of columniform sprites. Geophys. Res. Lett. 31, L04107 (2004). doi:10.1029/2003GL019081

    Google Scholar 

  • T. Adachi, H. Fukunishi, Y. Takahashi, M. Sato, A. Ohkubo, K. Yamamoto, Characteristics of thunderstorm systems producing winter sprites in Japan. J. Geophys. Res. 110, D11203 (2005). doi:10.1029/2004JD005012

    ADS  Google Scholar 

  • T. Adachi et al., Electric fields and electron energies in sprites and temporal evolutions of lightning charge moment measurements. J. Phys. D, Appl. Phys. 41(23), 234010 (2008)

    MathSciNet  ADS  Google Scholar 

  • N.L. Allen, A. Ghaffar, The conditions required for the propagation of a cathode-directed positive streamer in air. J. Phys. D, Appl. Phys. 28, 331–337 (1995)

    ADS  Google Scholar 

  • M.J. Alexander, A simulated spectrum of convectively generated gravity waves: propagation from the tropopause to the mesopause and the effects on the middle atmosphere. J. Geophys. Res. 101, 1571–1588 (1996)

    ADS  Google Scholar 

  • M.J. Alexander, R.A. Vincent, Gravity waves in the tropical lower stratosphere: a model study of seasonal and interannual variability. J. Geophys. Res. 105, 22299–22310 (2000)

    ADS  Google Scholar 

  • M.J. Alexander, J.R. Holton, D.R. Durran, The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci. 52, 2212–2226 (1995)

    ADS  Google Scholar 

  • R.A. Armstrong, J.A. Shorter, M.J. Taylor, D.M. Suszcynsky, W.A. Lyons, L.S. Jeong, Photometric measurements in the SPRITES 95 and 96 campaigns: nitrogen second positive (399.8 nm) and the first negative (427.8 nm) emission. J. Atmos. Terr. Phys. 60, 787–799 (1998)

    ADS  Google Scholar 

  • R.A. Armstrong, D.M. Suszcynsky, W.A. Lyons, T.E. Nelson, Multi-color photometric measurements of ionization and energies in sprites. Geophys. Res. Lett. 27, 653–657 (2000). doi:10.1029/1999GL003672

    ADS  Google Scholar 

  • T. Asano, M. Hayakawa, M.G. Cho, T. Suzuki, Computer simulations on the initiation and morphological difference of Japan winter and summer sprites. J. Geophys. Res. 113, A02308 (2008). doi:10.1029/2007JA012528

    ADS  Google Scholar 

  • T. Asano, T. Suzuki, Y. Hiraki, E. Mareev, M.G. Cho, M. Hayakawa, Computer simulations on sprite initiation for realistic lightning models with higher-frequency surges. J. Geophys. Res. 114, A02310 (2009a). doi:10.1029/2008JA013651

    ADS  Google Scholar 

  • T. Asano, T. Suzuki, M. Hayakawa, M.G. Cho, Three dimensional em computer simulation on sprite initiation above a horizontal lightning discharge. J. Atmos. Sol.-Terr. Phys. 71, 983–990 (2009b)

    ADS  Google Scholar 

  • L.P. Babich, A.Y. Kudryavtsev, M.L. Kudryavtseva, I.M. Kutsyk, Atmospheric gamma-ray and neutron flashes. J. Exp. Theor. Phys. 106(1), 65–76 (2008)

    ADS  Google Scholar 

  • C.P. Barrington-Leigh, U.S. Inan, Elves triggered by positive and negative lightning discharges. Geophys. Res. Lett. 26, 683–686 (1999)

    ADS  Google Scholar 

  • C.P. Barrington-Leigh, U.S. Inan, M. Stanley, S.A. Cummer, Sprites triggered by negative lightning discharges. Geophys. Res. Lett. 26, 3605–3608 (1999)

    ADS  Google Scholar 

  • C.P. Barrington-Leigh, U.S. Inan, M. Stanley, Identification of sprites and elves with intensified video and broadband array photometry. J. Geophys. Res. 106, 1741–1750 (2001). doi:10.1029/2000JA000073

    ADS  Google Scholar 

  • E.M. Bazelyan, Y.P. Raizer, Lightning Physics and Lightning Protection (IOP Publishing, Bristol, 2000), 325 pp.

    Google Scholar 

  • E.A. Bering, J.R. Benbrook, L. Bhusal, J.A. Garret, A.M. Paredes, E.M. Wescott, Observations of transient luminous events (TLEs) associated with negative cloud to ground (−CG) strokes. Geophys. Res. Lett. 31, L05104 (2004a). doi:10.1029/2003GL018659

    Google Scholar 

  • E.A. Bering et al., The results from the 1999 sprite balloon campaign. Adv. Space Res. 34, 1782–1791 (2004b)

    ADS  Google Scholar 

  • P. Berdeklis, R. List, The ice crystal–graupel collision charging mechanism of thunderstorm electrification. J. Atmos. Sci. 58, 2751–2770 (2001). doi:10.1175/1520-0469(2001)058<2751:TICGCC>2.0.CO;2

    ADS  Google Scholar 

  • K. Berger, R.B. Anderson, H. Kroeninger, Parameters of lightning flashes. Electra 41, 23–37 (1975)

    Google Scholar 

  • F.J. Bertin, L. Testud Kersley, P.R. Rees, The meteorological jet stream as a source of medium-scale gravity waves in the thermosphere: an experimental study. J. Atmos. Terr. Phys. 49, 1161–1183 (1978)

    ADS  Google Scholar 

  • L. Bhusal et al., Statistics and properties of transient luminous event found in the 1999 sprites balloon campaign. Adv. Space Res. 34, 1811–1814 (2004)

    ADS  Google Scholar 

  • D.J. Boccippio, E.R. William, S.J. Heckman, W.A. Lyons, I.T. Baker, R. Boldi, Sprites ELF transients, and positive ground strokes. Science 269, 1088–1091 (1995)

    ADS  Google Scholar 

  • W.L. Boeck et al., Lightning induced brightening in the airglow layer. Geophys. Res. Lett. 19, 99–102 (1992). doi:10.1029/91GL03168

    ADS  Google Scholar 

  • W.L. Boeck Jr., O.H. Vaughan, R.J. Blakeslee, B. Vonnegut, M. Brook, Observations of lightning in the stratosphere. J. Geophys. Res. 100, 1465–1475 (1995)

    ADS  Google Scholar 

  • W.L. Boeck, O.H. Vaughan, R.J. Blakeslee, B. Vonnegut, M. Brook, The role of the space shuttle videotapes in the discovery of sprites, jets and elves. J. Atmos. Sol.-Terr. Phys. 60, 669–677 (1998)

    ADS  Google Scholar 

  • M. Brook, M. Nakano, P. Krehbiel, T. Takeuti, The electrical structure of the Hokuriku winter thunderstorms. J. Geophys. Res. 87, 1207–1215 (1982)

    ADS  Google Scholar 

  • S.-C. Chang, C.L. Kuo, L.-J. Lee, A.B. Chen, H.-T. Su, R.-R. Hsu, H.U. Frey, S. Mende, Y. Takahashi, L.-C. Lee, ISUAL far-ultraviolet events, elves, and lightning current. J. Geophys. Res. 115, A00E46 (2010). doi:10.1029/2009JA014861

    ADS  Google Scholar 

  • O. Chanrion, T. Neubert, A pic-mcc code for simulation of streamer propagation in air. J. Comput. Phys. 227(15), 7222–7245 (2008). doi:10.1016/j.jcp.2008.04.016

    ADS  MATH  Google Scholar 

  • O. Chanrion, T. Neubert, Production of runaway electrons by negative streamer discharges. J. Geophys. Res. 115, A00E32 (2010). doi:10.1029/2009JA014774

    ADS  Google Scholar 

  • S. Chapman, R.S. Lindzen, Atmospheric Tides (Reidel, Hingham, 1970)

    Google Scholar 

  • A.B. Chen et al., Global distributions and occurrence rates of transient luminous events. J. Geophys. Res. 113, A08306 (2008). doi:10.1029/2008JA013101

    ADS  Google Scholar 

  • Z. Cheng, S.A. Cummer, H.-T. Su, R.R. Hsu, Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses. J. Geophys. Res. 112, A06318 (2007). doi:10.1029/2006JA011840

    ADS  Google Scholar 

  • M. Cho, M.J. Rycroft, Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere. J. Atmos. Sol.-Terr. Phys. 60, 871–888 (1998)

    ADS  Google Scholar 

  • M. Cho, M.J. Rycroft, Non-uniform ionisation of the upper atmosphere due to the electromagnetic pulse from a horizontal lightning discharge. J. Atmos. Sol.-Terr. Phys. 63, 559–580 (2001)

    ADS  Google Scholar 

  • J.K. Chou et al., Gigantic jets with negative and positive polarity streamers. J. Geophys. Res. 115, A00E45 (2010). doi:10.1029/2009JA014831

    ADS  Google Scholar 

  • J.K. Chou et al., Optical emissions and behaviors of the blue starters, blue jets, and gigantic jets observed in the Taiwan transient luminous event ground campaign. J. Geophys. Res. 116, A07301 (2011). doi:10.1029/2010JA016162

    ADS  Google Scholar 

  • S.A. Cummer, Current moment in sprite-producing lightning. J. Atmos. Sol.-Terr. Phys. 65, 499–508 (2003)

    ADS  Google Scholar 

  • S.A. Cummer, U.S. Inan, Measurement of charge transfer in sprite producing lightning using ELF radio atmospheric. Geophys. Res. Lett. 24, 1731–1734 (1997)

    ADS  Google Scholar 

  • S.A. Cummer, M. Fullekrug, Unusually intense continuing current in lightning produces delayed mesospheric breakdown. Geophys. Res. Lett. 28, 495–498 (2001)

    ADS  Google Scholar 

  • S.A. Cummer, W.A. Lyons, Lightning charge moment changes in U. S. High Plains thunderstorms. Geophys. Res. Lett. 31, L05114 (2004). doi:10.1029/2003GL019043

    Google Scholar 

  • S.A. Cummer, W.A. Lyons, Implication of lightning charge moment changes for sprite initiation. J. Geophys. Res. 110, A04304 (2005). doi:10.1029/2004JA010812

    ADS  Google Scholar 

  • S.A. Cummer, N.C. Jaugey, J.B. Li, W.A. Lyons, T.E. Nelson, E.A. Gerken, Submillisecond imaging of sprite development and structure. Geophys. Res. Lett. 33, L04104 (2006). doi:10.1029/2005GL024969

    Google Scholar 

  • S.A. Cummer, J. Li, F. Han, G. Lu, N. Jaugey, W.A. Lyons, T.E. Nelson, Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet. Nat. Geosci. 2, 617–620 (2009). doi:10.1038/NGEO607

    ADS  Google Scholar 

  • J.E. Davidson, Thunderstorm and auroral phenomena. Nature 47, 582 (1893)

    ADS  Google Scholar 

  • J.T. Desroschers, M.J. Heavner, D.L. Hampton, D.D. Sentman, E.M. Wescott, A preliminary morphology of optical transients above thunderstorms. EOS Suppl., 76(46), F105 (1995)

    Google Scholar 

  • E.M. Dewan, R.H. Picard, R.R. O’Neil, H.A. Gardiner, J. Gibson, J.D. Mill, E. Richards, M. Kendra, W.O. Gallery, MSX satellite observations of thunderstorm-generated gravity waves in midwives infrared images of the upper stratosphere. Geophys. Res. Lett. 25, 939–942 (1998)

    ADS  Google Scholar 

  • J.R. Dwyer, Source mechanisms of terrestrial gamma-ray flashes. J. Geophys. Res. 113, D10103 (2008). doi:10.1029/2007JD009248

    ADS  Google Scholar 

  • J.R. Dwyer et al., X-ray bursts associated with leader steps in cloud-to-ground lightning. Geophys. Res. Lett. 32, L01803 (2005). doi:10.1029/2004GL021782

    Google Scholar 

  • U. Ebert, D.D. Sentman, Streamers, sprites, leaders, lightning: from micro-to macroscales. J. Phys. D, Appl. Phys. 41, 230301 (2008). doi:10.1088/0022-3727/41/23/230301

    ADS  Google Scholar 

  • H.E. Edens, Photographic and lightning mapping observations of a blue starter over a New Mexico thunderstorm. Geophys. Res. Lett. 38, L17804 (2011). doi:10.1029/2011GL048543

    ADS  Google Scholar 

  • S. Fadnavis, D. Siingh, G. Beig, R.P. Singh, Seasonal variation of the mesospheric inversion layer, thunderstorms, and mesospheric ozone over India. J. Geophys. Res. 112, D15305 (2007). doi:10.1029/2006JD008379

    ADS  Google Scholar 

  • S. Fadnavis, D. Siingh R.P. Singh, Mesospheric inversion layer and sprites. J. Geophys. Res. 114, D23307 (2009). doi:10.1029/2009JD011913

    ADS  Google Scholar 

  • R. Ford, M.E. McIntyre, W.A. Norton, Balance and the slow quasi-manifold: some explicit results. J. Atmos. Sci. 57, 1236–1254 (2000)

    MathSciNet  ADS  Google Scholar 

  • R.C. Franz, R.J. Nemzek, J.R. Winckler, Television image of a large upward electrical discharge above a thunderstorm. Science 249, 48–51 (1990)

    ADS  Google Scholar 

  • H.U. Frey et al., Halos generated by negative cloud-to-ground lightning. Geophys. Res. Lett. 34, L18801 (2007). doi:10.1029/2007GL030908

    ADS  Google Scholar 

  • D.C. Fritts, G.D. Nastrom, Sources of mesoscale variability of gravity waves II: frontal convective, and jet stream excitation. J. Atmos. Sci. 49, 111–127 (1992)

    ADS  Google Scholar 

  • D.C. Fritts, M.J. Alexander, Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41, 1003 (2003). doi:10.1029/2001RG000106

    ADS  Google Scholar 

  • D.C. Fritts, J.R. Isler, J.H. Hecht, R.L. Walterscheid, O. Andreassen, Wave breaking signatures in sodium densities and OH nightglow, part II, Simulation of wave and instability structures. J. Geophys. Res. 102, 6669–6684 (1997)

    ADS  Google Scholar 

  • D.C. Fritts, S.L. Wadas, Y. Yamada, An estimate of strong local body forcing and gravity wave radiation based on OH airglow and meteor radar observations. Geophys. Res. Lett. 29, 429–1432 (2002). doi:10.1029/2001GL013753.29

    Google Scholar 

  • H. Fukunishi, Y. Takahashi, M. Kubota, K. Sakanoi, U.S. Inan, W.A. Lyons, Elves: lightning-induced trancient luminous events in the lower ionosphere. Geophys. Res. Lett. 23, 2157–2160 (1996)

    ADS  Google Scholar 

  • H. Fukunishi, Y. Takahashi, M. Sato, A. Shono, M. Fujito, Y. Watanabe, Ground-based observations of ULF transients excited by strong lightning discharges producing elves and sprites. Geophys. Res. Lett. 24, 2973–2976 (1997)

    ADS  Google Scholar 

  • H. Fukunishi, Y. Takahashi, A. Uchida, M. Sera, K. Adachi, R. Miyasato, Occurrences of sprites and elves above the Sea of Japan near Hokuriku in winter. Eos 80(46), F217 (1999)

    ADS  Google Scholar 

  • H. Fukunishi, Y. Hiraki, T. Adachi, L. Tong, K. Nanbu, Occurrence conditions for gigantic jets connecting the thundercloud and the ionosphere. Eos 86(52), Abstract AE11A-02 (2005). Fall Meet. Suppl.

    Google Scholar 

  • M. Fullekrug, E.A. Mareev, M.J. Rycroft, Sprites, Elves and Intense Lightning Discharges (Springer, Dordrecht, 2006), 398 pp.

    Google Scholar 

  • M. Fullekrug, R.A. Roussel-Dupre, E.M.D. Symbalisty, O. Chanrion, A. Odzimek, O.V. der Velde, T. Neubert, Relativistic runaway breakdown in low-frequency radio. J. Geophys. Res. 115, A00E09 (2010). doi:10.1029/2009JA014468

    ADS  Google Scholar 

  • I. Gallimberti, G. Bacchiega, A. Bondiou-Clergerie, Fundamental processes in long air gap discharges. C. R. Phys. 3, 1335–1359 (2002)

    ADS  Google Scholar 

  • W.R. Gamerota, S.A. Cummer, J. Li, H.C. Stenbaek-Nielsen, R.K. Haaland, M.G. McHarg, Comparison of sprite initiation altitudes between observations and models. J. Geophys. Res. 116, A02317 (2011). doi:10.1029/2010JA016095

    ADS  Google Scholar 

  • E.A. Gerken, U.S. Inan, A survey of streamer and diffuse glow dynamics observed in sprites using telescopic imagery. J. Geophys. Res. 107, 1344 (2002). doi:10.1029/2002JA009248

    Google Scholar 

  • E.A. Gerken, U.S. Inan, Comparison of photometric measurements and charge moment estimations in two sprite-producing storms. Geophys. Res. Lett. 31, L03107 (2004). doi:10.1029/2003GL018751

    Google Scholar 

  • E.A. Gerken, U.S. Inan, C.P. Barrington-Leigh, Telescopic imaging of sprites. Geophys. Res. Lett. 27(17), 2637–2640 (2000). doi:2000GL000035

    ADS  Google Scholar 

  • R.N. Ghodpage, D. Siingh, R.P. Singh, G.K. Mukherjee, P. Vohat, A.K. Singh, Tidal and gravity waves study from the airglow measurements at Kolhapur (India). J. Earth Syst. Sci. (2012, in press)

  • B.D. Green, M.E. Fraser, W.T. Rawlins, L. Jeong, W.A.M. Blumberg, S.B. Mende, G.R. Swenson, D.L. Hampton, E.M. Wescott, D.D. Sentman, Molecular excitation in sprites. Geophys. Res. Lett. 23, 2161–2164 (1996)

    ADS  Google Scholar 

  • A.V. Gurevich, G.M. Milikh, R.A. Roussell-Dupre, Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett. A 165, 463–468 (1992)

    ADS  Google Scholar 

  • A. Gurevich, K. Zybin, Y. Medvedev, Runaway breakdown in strong electric field as a source of terrestrial gamma flashes and gamma bursts in lightning leader steps. Phys. Lett. A 361, 119–125 (2007)

    ADS  Google Scholar 

  • L.C. Hale, The coupling of ELF/VLF energy from lightning and MeV particle to the middle atmosphere, ionosphere and global circuit. J. Geophys. Res. 99, 21089–21096 (1994)

    ADS  Google Scholar 

  • C. Haldoupis, T. Neubert, U.S. Inan, A. Mika, T.H. Allin, R.A. Marshall, Subionospheric early VLF signal perturbations observed in one-to-one association with sprites. J. Geophys. Res. 109, A10303 (2004). doi:10.1029/2004JA010651

    ADS  Google Scholar 

  • C. Haldoupis, N. Amvrosiadi, B.R.T. Cotts, O.A. van der Velde, O. Chanrion, T. Neubert, More evidence for a one-to-one correlation between sprites and early VLF perturbations. J. Geophys. Res. 115, A07304 (2010). doi:10.1029/2009JA015165

    ADS  Google Scholar 

  • S.F. Hardman, R.L. Dowden, J.B. Brundell, J.L. Bahr, Z. Kawasaki, C.J. Rodger, Sprite observations in the northern territory of Australia. J. Geophys. Res. 105, 4689–4697 (2000). doi:10.1029/1999JD900325

    ADS  Google Scholar 

  • M. Hayakawa, T. Nakamura, Y. Hobara, E.R. Williams, Observation of sprites over the Sea of Japan and conditions for lightning induced sprites in winter. J. Geophys. Res. 109, A01312 (2004). doi:10.1029/2003JA0099905

    ADS  Google Scholar 

  • M.J. Heavner, Optical spectroscopic observations of sprites, blue jets, and elves: inferred microphysical processes and their microphysical implications, Ph.D. thesis, University of Alaska Fairbanks, Fairbanks, Alaska, 2000

  • S.J. Heckman, E.R. Williams, Corona envelopes and lightning currents. J. Geophys. Res. 94, 13287–13294 (1989)

    ADS  Google Scholar 

  • J.R. Herman, R.A. Goldberg, Sun, weather and climate. NASA Spec. Publ. SP-426, 360 (1978)

    Google Scholar 

  • C.O. Hines, Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 58, 1441–1481 (1960)

    ADS  Google Scholar 

  • Y. Hiraki, H. Fukunishi, Theoretical criterion of charge moment change by lightning for initiation of sprites. J. Geophys. Res. 111, A11305 (2006). doi:10.1029/2006JA011729

    ADS  Google Scholar 

  • R.R. Hodges, Generation of turbulence in the upper atmosphere by internal gravity waves. J. Geophys. Res. 72, 3455–3458 (1967)

    Google Scholar 

  • J.R. Holton, J.H. Beres, X. Zhou, On the vertical scale of gravity waves excited by localized thermal forcing. J. Atmos. Sci. 59, 2019–2023 (2002)

    MathSciNet  ADS  Google Scholar 

  • R.R. Hsu et al., Gigantic jet observation by the ISUAL payload of FORMOSAT-2 satellite. Eos 86(52), Abstract AE23A-0992 (2005). Fall Meet. Suppl.

    Google Scholar 

  • H. Hu, Q. Li, R.H. Holzworth, Thunderstorm related variations in stratospheric conductivity measurements. J. Geophys. Res. 94, 16429–16435 (1989)

    ADS  Google Scholar 

  • W. Hu, S.A. Cummar, W.A. Lyons, T.E. Nelson, Lightning charge moment changes for the initiation of sprites. Geophys. Res. Lett. 29, 1279–1283 (2002). doi:10.1029/2001GL014593

    ADS  Google Scholar 

  • W. Hu, S.A. Cummer, W.A. Lyons, Testing sprite initiation theory using lightning measurements and modeled electromagnetic fields. J. Geophys. Res. 112, D13115 (2007). doi:10.1029/2006JD007939

    ADS  Google Scholar 

  • E. Huang, E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, C. Wong, Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res. 104, 16943–16964 (1999)

    ADS  Google Scholar 

  • T.-Y. Huang, C.L. Kuo, C.Y. Chiang, A.B. Chen, H.T. Su, R.R. Hsu, Further investigations of lightning-induced transient emissions in the OH airglow layer. J. Geophys. Res. 115, A10326 (2010). doi:10.1029/2010JA015558

    ADS  Google Scholar 

  • P. Hubert, P. Laroche, A. Eybert-Berard, L. Barret, Triggered lightning in New Mexico. J. Geophys. Res. 86, 2511–2521 (1984)

    ADS  Google Scholar 

  • U.S. Inan, T.F. Bell, J.V. Rodriguez, Heating and ionization of the lower ionosphere by lightning. Geophys. Res. Lett. 18, 705–708 (1991)

    ADS  Google Scholar 

  • U.S. Inan, T.F. Bell, V.P. Pasko, D.D. Sentman, E.M. Wescott, W.A. Lyons, VLF signatures of ionospheric disturbances associated with sprites. Geophys. Res. Lett. 22, 3461–3464 (1995)

    ADS  Google Scholar 

  • U.S. Inan, W.A. Sampson, Y.N. Taranenko, Space-time structure of optical flashes and ionization changes produced by lightning EMP. Geophys. Res. Lett. 23, 133–136 (1996)

    ADS  Google Scholar 

  • U.S. Inan, C. Barrington-Leigh, S. Hansen, V.S. Glukhov, T.F. Bell, R. Rairden, Rapid lateral expansion of optical luminosity in lightning-induced inospheric flashes referred to as ‘elves’. Geophys. Res. Lett. 24, 5–9 (1997)

    Google Scholar 

  • U.S. Inan, S.A. Cummer, R.A. Marshall, A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J. Geophys. Res. 115, A00E36 (2010). doi:10.1029/2009JA014775

    Google Scholar 

  • J.H. Jiang, S.D. Eckermann, D.L. Wu, J. Ma, A search for mountain waves in MLS stratospheric limb radiances from the winter northern hemisphere: data analysis and global mountain wave modeling. J. Geophys. Res. 109, D03107 (2004). doi:10.1029/2003JD003974

    Google Scholar 

  • M.P. Johnson, U.S. Inan, Sferic clusters associated with early/fast VLF events. Geophys. Res. Lett. 27, 1391–1394 (2000). doi:10.1029/1999GL010757

    ADS  Google Scholar 

  • F. Kobayashi, T. Shimura, A. Wada, T. Sakai, Lightning activities of winter thundercloud system around the Hokuriku coast of Japan, in Proc 10th International Conference of Atmospheric Electricity (1996), pp. 560–563

    Google Scholar 

  • V.I. Krassovsky, Infrasonic variations of OH emission in the upper atmosphere. Ann. Geophys. 28, 739 (1972)

    Google Scholar 

  • P.R. Krehbiel, M. Brook, R.A. McCrory, Analysis of the charge structure of lightning discharges to ground. J. Geophys. Res. 84, 2432–2456 (1979)

    ADS  Google Scholar 

  • P.R. Krehbiel, J.A. Riousset, V.P. Pasko, R.J. Thomas, W. Rison, M.A. Stanley, H.E. Edens, Upward electrical discharges from thunderstorms. Nat. Geosci. 1, 233–237 (2008). doi:10.1038/ngeo162

    ADS  Google Scholar 

  • E.P. Krider, Physics of lightning today. Rev. Gén. Électr. (France) 6, 2–7 (1994)

    Google Scholar 

  • S. Kumar, A. Kumar, C.J. Rodger, Subionospheric early VLF perturbations observed at Suva: VLF detection of red sprites in the day? J. Geophys. Res. 113, A03311 (2008). doi:10.1029/2007JA012734

    ADS  Google Scholar 

  • C.-L. Kuo et al., Modeling elves observed by FORMOSAT-2 satellite. J. Geophys. Res. 112, A11312 (2007). doi:10.1029/2007JA012407

    ADS  Google Scholar 

  • C.-L. Kuo, A.B. Chen, J.K. Chou, L.Y. Tsai, R.R. Hsu, H.T. Su, H.U. Frey, S.B. Mende, Y. Takahashi, L.C. Lee, Radiative emission and energy deposition in transient luminous events. J. Phys. D, Appl. Phys. 41, 234014 (2008)

    ADS  Google Scholar 

  • C.-L. Kuo et al., Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets. J. Geophys. Res. 114, A04314 (2009). doi:10.1029/2008JA013791

    Google Scholar 

  • I.M. Kutsyk, L. Babich, Spatial structure of optical emissions in the model of gigantic upward atmospheric discharges with participation of runaway electrons. Phys. Lett. A 253, 75–82 (1999)

    ADS  Google Scholar 

  • L.-J. Lee et al., Controlling synoptic-scale factors for the distribution of transient luminous events. J. Geophys. Res. 115, A00E54 (2010). doi:10.1029/2009JA014823

    ADS  Google Scholar 

  • J. Li, S.A. Cummer, Measurement of sprite streamer acceleration and deceleration. Geophys. Res. Lett. 36, L10812 (2009). doi:10.1029/2009GL037581

    ADS  Google Scholar 

  • J. Li, S.A. Cummer, Estimation of electric charge in sprites from optical and radio observations. J. Geophys. Res. 116, A01301 (2011). doi:10.1029/2010JA015391

    ADS  Google Scholar 

  • J. Li, S.A. Cummer, W.A. Lyons, T.E. Nelson, Coordinated analysis of delayed sprites with high-speed images and remote electromagnetic fields. J. Geophys. Res. 113, D20206 (2008a). doi:10.1029/2008JD010008

    ADS  Google Scholar 

  • C. Li, U. Ebert, W.J.M. Brok, W. Hundsdorfer, Spatial coupling of particle and fluid models for streamer: where nonlocality matters. J. Phys. D, Appl. Phys. 41, 032055 (2008b). doi:10.1088/0022-3727/41/3/032005

    Google Scholar 

  • C. Li, U. Ebert, W. Hundsdorfer, 3D hybrid computations for streamer discharges and production of run-away electrons. J. Phys. D, Appl. Phys. 42, 202003 (2009)

    ADS  Google Scholar 

  • N. Liu, V.P. Pasko, Effects of photoionization on propagation and branching of positive and negative streamers in sprites. J. Geophys. Res. 109, A04301 (2004). doi:10.1029/2003JA010064

    ADS  Google Scholar 

  • N. Liu et al., Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT-2 satellite. Geophys. Res. Lett. 33, L01101 (2006). doi:10.1029/2005GL024243

    Google Scholar 

  • N.Y. Liu, V.P. Pasko, K. Adams, H.C. Stenbaek-Nielsen, M.G. McHarg, Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high-speed video observations. J. Geophys. Res. 114, A00E03 (2009). doi:10.1029/2008JA013720

    Google Scholar 

  • F. Lott, The transient emission of propagating gravity waves by stably stratified shear layer. Q. J. R. Meteorol. Soc. 123, 1603–1619 (1997)

    ADS  Google Scholar 

  • G. Lu, Transient electric field at high altitudes due to lightning: possible role of induction field in the formation of elves. J. Geophys. Res. 111, D02103 (2006). doi:10.1029/2005JD005781

    ADS  Google Scholar 

  • G. Lu, S.A. Cummer, W.A. Lyons, P.R. Krehbiel, J. Li, W. Rison, R.J. Thomas, H.E. Edens, M.A. Stanley, W. Beasley, D.R. MacGoman, O.A. van der Velde, M.B. Cohen, T.J. Lang, S.A. Rutledge, Lightning development associated with two negative gigantic jets. Geophys. Res. Lett. 38, L12801 (2011). doi:10.1029/2011GL047662

    ADS  Google Scholar 

  • A. Luque, F.J. Gordillo-Vázquez, Mesospheric electric breakdown and delayed sprite ignition caused by electron detachment. Nat. Geosci. 5, 22–25 (2011). doi:10.1038/NGEO1314

    ADS  Google Scholar 

  • A. Luque, U. Ebert, Sprites in varying air density: charge conservation, glowing negative trails and changing velocity. Geophys. Res. Lett. 37, L06806 (2010). doi:10.1029/2009GL041982

    Google Scholar 

  • W.A. Lyons, Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video. Geophys. Res. Lett. 21, 875 (1994)

    ADS  Google Scholar 

  • W.A. Lyons, Sprite observations above the U.S. high plains in relation to their parent thunderstorm systems. J. Geophys. Res. 101, 29641–29652 (1996)

    ADS  Google Scholar 

  • W.A. Lyons, The meteorology of transient luminous events—an introduction and overview, in Sprites, Elves and Intense Lightning Discharge, ed. by M. Fullekrug et al. NATO Science Series to Mathematics, Physics and Chemistry, vol. 225 (Springer, Berlin, 2006), pp. 19–56

    Google Scholar 

  • W.A. Lyons, E.R. Williams, Preliminary investigations of the phenomenology of cloud-to-stratosphere lightning discharges preprints, in Conference on Atmospheric Electricity (Am. Meteorol. Soc., St. Louis, 1993)

    Google Scholar 

  • W.A. Lyons, R.A. Armstrong, E.R. Williams, E.A. Bering, The hundred year hunt for the sprite. Eos 81, 373–377 (2000)

    ADS  Google Scholar 

  • W.A. Lyons, T.E. Nelson, R.A. Armstrong, V.P. Pasko, M.A. Stanley, Upward electrical discharges from thunderstorm tops. Bull. Am. Meteorol. Soc. 84, 445–454 (2003a). doi:10.1175/BAMS-84-4-445

    ADS  Google Scholar 

  • W.A. Lyons, T.E. Nelson, E.R. Williams, S.A. Cummer, M.A. Stanley, Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems. Mon. Weather Rev. 131, 2417–2427 (2003b). doi:10.1175/1520-0493(2003)131<2417:COSPCL>2.0.CO;2

    ADS  Google Scholar 

  • W.A. Lyons, S.A. Cummer, M.A. Stanley, G.R. Huffiness, K.C. Wiens, T.E. Nelson, Supercells and sprites. Am. Meteorol. Soc. BAMS 1165–1174 (2008)

  • W.A. Lyons, M.A. Stanley, J.D. Meyer, T.E. Nelson, S.A. Rutledge, T. Lang, S.A. Cummer, The meteorological and electrical structure of TLE-producing convective storms, in Lightning: Principles, Instruments and Applications, ed. by H. Betz, U. Schumann, P. Laroche (Springer, Berlin, 2009), pp. 387–415

    Google Scholar 

  • T. MacKenzie, H. Toynbee, Meteorological phenomena. Nature 33, 26 (1886)

    Google Scholar 

  • R.A. Maddox, Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 61, 1374–1387 (1980)

    ADS  Google Scholar 

  • U.B. Makhlouf, R.H. Picard, J.R. Winick, Photochemical dynamical modeling of the measured response of airglow to gravity waves. J. Geophys. Res. 100, 11289–11311 (1995)

    ADS  Google Scholar 

  • D. Malan, Sur les decharges orageuses dans la haute atmosphere. Academie des Sciences, 3 November session (1937)

  • T.C. Marshall, W.D. Rust, Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems. Bull. Am. Meteorol. Soc. 74, 2159–2170 (1993)

    ADS  Google Scholar 

  • R.A. Marshall, U.S. Inan, High-speed measurements of small-scale features in sprites: sizes and lifetimes. Radio Sci. 41, RS6S43 (2006). doi:10.1029/2005RS003353

    Google Scholar 

  • R.A. Marshall, U.S. Inan, Possible direct cloud-to-ionosphere current evidenced by sprite-initiated secondary TLEs. Geophys. Res. Lett. 34, L05806 (2007). doi:10.1029/2006GL028511

    Google Scholar 

  • T.C. Marshall, M. Stolzenburg, W.D. Rust, Electric field measurements above mesoscale convective systems. J. Geophys. Res. 101, 6979 (1996)

    ADS  Google Scholar 

  • R.A. Marshall, U.S. Inan, W.A. Lyons, On the association of early/fast very low frequency perturbations with sprites and rare examples of VLF backscatter. J. Geophys. Res. 111, D19108 (2006). doi:10.1029/2006JD007219

    ADS  Google Scholar 

  • R.A. Marshall, U.S. Inan, T.W. Chevalier, Early VLF perturbations caused by lightning EMP-driven dissociative attachment. Geophys. Res. Lett. 35, L21807 (2008). doi:10.1029/2008GL035358

    ADS  Google Scholar 

  • R.A. Marshall, U.S. Inan, V.S. Glukhov, Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges. J. Geophys. Res. 115, A00E17 (2010). doi:10.1029/2009JA014469

    ADS  Google Scholar 

  • V. Mazur, P.R. Krehbiel, X.-M. Shao, Correlated high-speed video and radio interferometric observations of a cloud-to-ground lightning flash. J. Geophys. Res. 100, 25731–25753 (1995)

    ADS  Google Scholar 

  • M. McCarthy, G. Parks, Further observations of X-rays inside thunderstorms. Geophys. Res. Lett. 12, 393–396 (1985)

    ADS  Google Scholar 

  • M.G. McHarg, R.K. Haaland, D.R. Moudry, H.C. Stenbaek-Nielsen, Altitude-time development of sprites. J. Geophys. Res. 107(A11), 1364 (2002). doi:10.1029/2001JA000283

    Google Scholar 

  • M.G. McHarg, H.C. Stenbaek-Nielsen, T. Kammae, Observation of streamer formation in sprites. Geophys. Res. Lett. 34, L06804 (2007). doi:10.1029/2006GL027854

    Google Scholar 

  • S.B. Mende, H.U. Frey, R.R. Hsu, H.T. Su, A. Chen, L.C. Lee, H. Fukunishi, Y. Takahashi, Sprite imaging results from the ROCSAT-2 ISUAL instrument. Eos 85(47), Abstract AE51A-02 (2004). Fall Meet. Suppl.

    Google Scholar 

  • S.B. Mende, H.U. Frey, R.R. Hsu, H.T. Su, A.B. Chen, L.C. Lee, D.D. Sentman, Y. Takahashi, H. Fukunishi, D region ionization by lightning-induced electromagnetic pulses. J. Geophys. Res. 110, A11312 (2005). doi:10.1029/2005JA011064

    ADS  Google Scholar 

  • J.W. Meriwether, A review of the photochemistry of selected nightglow emission from mesopause. J. Geophys. Res. 94, 14629–14646 (1989)

    ADS  Google Scholar 

  • Á. Mika, C. Haldoupis, R.A. Marshall, T. Neubert, U.S. Inan, Subionospheric VLF signature and their association with sprites observed during EuroSprite-2003. J. Atmos. Sol.-Terr. Phys. 67, 1580–1597 (2005). doi:10.1016/j.jastp.2005.08.011

    ADS  Google Scholar 

  • A. Mika, C. Haldoupis, T. Neubert, R.R. Su, H.T. Hsu, R.J. Steiner, R.A. Marshall, Early VLF perturbations observed in association with elves. Ann. Geophys. 24, 2179–2189 (2006)

    ADS  Google Scholar 

  • E.V. Mishin, G.M. Milikh, Blue jets: upward propagating lightning. Space Sci. Rev. 137, 473–488 (2008). doi:10.1007/s11214-008-9346-z

    ADS  Google Scholar 

  • R. Miyasato, H. Fukunishi, Y. Takahashi, M.J. Taylor, Energy estimation of electrons producing sprite halos using array photometer data. J. Atmos. Sol.-Terr. Phys. 65, 573–581 (2003)

    ADS  Google Scholar 

  • C.B. Moore, K.B. Eack, G.D. Aulich, W. Rison, Energetic radiation associated with lightning stepped-leaders. Geophys. Res. Lett. 28, 2141–2144 (2001)

    ADS  Google Scholar 

  • J.S. Morrill, E.J. Bucsela, V.P. Pasko, S.L. Berg, W.M. Benesch, E.M. Wescott, M.J. Heavner, Time resolved N2 triplet state vibrational populations and emissions associated with red sprites. J. Atmos. Sol.-Terr. Phys. 60, 811–829 (1998). doi:10.1016/S1364-6826(98)00031-5

    ADS  Google Scholar 

  • G. Moss, V.P. Pasko, N. Liu, G. Veronis, Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leader. J. Geophys. Res. 111, A02307 (2006). doi:10.1029/2005JA011350

    ADS  Google Scholar 

  • D.R. Moudry, The dynamics and morphology of sprites, Ph.D. thesis, University of Alaska Fairbanks, Fairbanks, Alaska, 2003

  • I. Nagano, S. Yagitani, K. Miyamura, S. Makino, Full-wave analysis of elves created by lightning-generated electromagnetic pulses. J. Atmos. Terr. Phys. 65, 615–625 (2003)

    ADS  Google Scholar 

  • T. Nakamura, T. Aono, T. Tsuda, A.G. Admiranto, E.S. Achmad, Mesospheric gravity waves over a tropical convective region observed by OH airglow imaging in Indonesia. Geophys. Res. Lett. 30, 1882–1885 (2003)

    ADS  Google Scholar 

  • G.D. Nastrom, D.C. Fritts, Sources of mesoscale variability of gravity waves I: topographic excitation. J. Atmos. Sci. 49, 101–110 (1992)

    ADS  Google Scholar 

  • T. Neubert, T.H. Allin, H. Stenbaek-Nielsen, E. Blanc, Sprites over Europe. Geophys. Res. Lett. 28, 3585–3588 (2001)

    ADS  Google Scholar 

  • T. Neubert, T.H. Allin, E. Blanc, T. Farges, C. Haldoupis, A. Mika et al., Co-ordinated observations of transient luminous events during the Eurosprite 2003 campaign. J. Atmos. Sol.-Terr. Phys. 67, 807–820 (2005)

    ADS  Google Scholar 

  • T. Neubert et al., Recent results from studies of electric discharges in the mesosphere. Surv. Geophys. 29, 71–137 (2008)

    Google Scholar 

  • R.T. Newsome, U.S. Inan, High-frame-rate reconstruction of a dynamic 2-D scene from continuous orthogonal projections. IEEE Trans. Geosci. Remote Sens. 47, 2646–2657 (2009). doi:10.1109/TGRS.2009.2015289

    ADS  Google Scholar 

  • R.T. Newsome, U.S. Inan, Free-running ground-based photometric array imaging of transient luminous events. J. Geophys. Res. 115, A00E41 (2010). doi:10.1029/2009JA014834

    ADS  Google Scholar 

  • L. Niemeyer, L. Ullrich, N. Wiegart, The mechanism of leader breakdown in electronegative gases. IEEE Trans. Electr. Insul. 24, 309–324 (1989). doi:10.1109/14.90289

    Google Scholar 

  • J. Oberheide, Q. Wu, T.L. Killeen, M.E. Hagan, R.G. Roble, Diurnal non-migrating tides from TIMED Doppler interferometer wind data: monthly climatologies and seasonal variations. J. Geophys. Res. 111, A10S03 (2006). doi:10.1029/2005JA011491

    ADS  Google Scholar 

  • A. Ohkubo, H. Fukunishi, Y. Takahashi, T. Adachi, VLF/ELF sferic evidence for in-cloud discharge activity producing sprites. Geophys. Res. Lett. 32, L04812 (2005). doi:10.1029/2004GL021943

    Google Scholar 

  • V.P. Pasko, Electric jets. Nature 423, 927–929 (2003)

    ADS  Google Scholar 

  • V.P. Pasko, Theoretical modeling of sprites and jets, in Sprites, Elves and Intense Lightning Discharges, ed. by M. Füllekrug, E.A. Mareev, M.J. Rycroft. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 225, pp. 253–311 (Springer, Heidelberg, 2006)

    Google Scholar 

  • V.P. Pasko, Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges. Plasma Sources Sci. Technol. 16, S13–S29 (2007)

    ADS  Google Scholar 

  • V.P. Pasko, Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere. Plasma Phys. Control. Fusion 50, 124050 (2008)

    ADS  Google Scholar 

  • V.P. Pasko, Recent advances in theory of transient luminous events. J. Geophys. Res. 115, A00E35 (2010). doi:10.1029/2009JA014860

    ADS  Google Scholar 

  • V.P. Pasko, J.J. George, Three-dimensional modeling of blue jets and blue starters. J. Geophys. Res. 107, 1458 (2002). doi:10.1029/2002JA009473

    Google Scholar 

  • V.P. Pasko, H.C. Stenbaek-Nielsen, Diffuse and streamer regions of sprites. Geophys. Res. Lett. 29, 1440 (2002). doi:10.1029/2001GL014241

    ADS  Google Scholar 

  • V.P. Pasko, U.S. Inan, Y.N. Taranenko, T.F. Bell, Heating ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thundercloud field. Geophys. Res. Lett. 22, 365–368 (1995)

    ADS  Google Scholar 

  • V.P. Pasko, U.S. Inan, T.F. Bell, Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud field. Geophys. Res. Lett. 23, 649 (1996a). doi:10.1029/96GL00473

    ADS  Google Scholar 

  • V.P. Pasko, U.S. Inan, T.F. Bell, Blue jets produced by quasielectrostatic pre-discharge thundercloud fields. Geophys. Res. Lett. 23, 301–304 (1996b)

    ADS  Google Scholar 

  • V.P. Pasko, U.S. Inan, T.F. Bell, Sprites as evidence of vertical gravity wave structures above mesoscale thunderstorms. Geophys. Res. Lett. 24, 1735–1738 (1997a)

    ADS  Google Scholar 

  • V.P. Pasko, U.S. Inan, T.F. Bell, Y.N. Taranenko, Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. 102, 4529 (1997b). doi:10.1029/96JA03528

    ADS  Google Scholar 

  • V.P. Pasko, U.S. Inan, T.F. Bell, Spatial structures of sprites. Geophys. Res. Lett. 25, 2123–2126 (1998)

    ADS  Google Scholar 

  • V.P. Pasko, U. Inan, T. Bell, Large scale modeling of sprites and blue jets. Eos 80(46), Abstract A42E-11 (1999). Fall Meet. Suppl.

    Google Scholar 

  • V.P. Pasko, U.S. Inan, T.F. Bell, Fractal structure of sprites. Geophys. Res. Lett. 27, 497–500 (2000)

    ADS  Google Scholar 

  • V.P. Pasko, M.A. Stanley, J.D. Mathews, U.S. Inan, T.G. Wood, Electrical discharge from a thundercloud top to the ionosphere. Nature 416, 152–154 (2002)

    ADS  Google Scholar 

  • V.P. Pasko, Y. Yair, C.-L. Kuo, Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9813-9

    Google Scholar 

  • N.I. Petrov, G.N. Petrova, Physical mechanisms for the development of lightning discharges between a thundercloud and the ionosphere. Tech. Phys. 44, 472–475 (1999)

    Google Scholar 

  • R.H. Picard, R.R. O’Neil, H.A. Gardiner, J. Gibson, J.R. Winick, W.O. Gallery Jr., A.T. Stair, P.P. Wintersteiner, E.R. Hegblom, E. Richards, Remote sensing of discrete stratospheric gravity-wave structure at 4:3-μm from the MSX satellite. Geophys. Res. Lett. 25, 2809–2812 (1998)

    ADS  Google Scholar 

  • O. Pinto Jr., M.M.F. Saba, I.R.C.A. Pinto, F.S.S. Tavares, K.P. Naccarato, N.N. Solorzano, M.J. Taylor, P.D. Paulet, R.H. Holzworth, Thunderstorm and lightning characteristic associated with sprites in Brazil. Geophys. Res. Lett. 31, L13103 (2004). doi:10.1029/2004GL020264

    ADS  Google Scholar 

  • C. Price, Global thunderstorm activity, in Sprites, Elves and Intense Lightning Discharges, ed. by M. Fullekrug et al. (2006), pp. 85–99

    Google Scholar 

  • J. Qin, S. Celestin, V.P. Pasko, On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity. J. Geophys. Res. 116, A06305 (2011). doi:10.1029/2010JA016366

    ADS  Google Scholar 

  • Y.P. Raizer, G.M. Milikh, M.N. Shneider, On the mechanism of blue jet formation and propagation. Geophys. Res. Lett. 33, L23801 (2006). doi:10.1029/2006GL027697

    ADS  Google Scholar 

  • Y.P. Raizer, G.M. Milikh, M.N. Shneider, Leader–streamers nature of blue jets. J. Atmos. Sol.-Terr. Phys. 69, 925–938 (2007). doi:10.1016/j.jastp.2007.02.007

    ADS  Google Scholar 

  • Y.P. Raizer, G.M. Milikh, M.N. Shneider, Streamer and leader-like processes in the upper atmosphere: models of red sprites and blue jets. J. Geophys. Res. 115, A00E42 (2010). doi:10.1029/2009JA014645

    ADS  Google Scholar 

  • V.A. Rakov, W.G. Tuni, Lightning electric field intensity at high altitudes: inferences for production of elves. J. Geophys. Res. 108, 4639 (2003). doi:10.1029/2003JD003618

    Google Scholar 

  • V.A. Rakov, M.A. Uman, Lightning: Physics and Effects (Cambridge Univ. Press, New York, 2003)

    Google Scholar 

  • V.A. Rakov, D.E. Crawford, K.J. Rambo, G.H. Schnetzer, M.T.A. Uman, R. Thottappillil, M-component mode of charge transfer to ground in lightning discharge. J. Geophys. Res. 106, 22817–22831 (2001)

    ADS  Google Scholar 

  • J.A. Riousset, V.P. Pasko, P.R. Krehbiel, R.J. Thomas, W. Rison, Three-dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations. J. Geophys. Res. 112, D15203 (2007). doi:10.1029/2006JD007621

    ADS  Google Scholar 

  • J.A. Riousset, V.P. Pasko, P.R. Krehbiel, W. Rison, M.A. Stanley, Modeling of thundercloud screening charges: implications for blue and gigantic jets. J. Geophys. Res. 115, A00E10 (2010). doi:10.102029/09JA014286

    ADS  Google Scholar 

  • C.J. Rodger, Red sprites, upward lightning, and VLF perturbations. Rev. Geophys. 37, 317–336 (1999). doi:10.1029/1999RG900006

    ADS  Google Scholar 

  • C.J. Rodger, Subionospheric VLF perturbations associated with lightning discharges. J. Atmos. Sol.-Terr. Phys. 65, 591–606 (2003)

    ADS  Google Scholar 

  • C.J. Rodger, M. Cho, M.A. Clilverd, M.J. Rycroft, Lower ionospheric modification by lightening-EMP: simulation of the night ionosphere over the United States. Geophys. Res. Lett. 28, 199–202 (2001)

    ADS  Google Scholar 

  • R.A. Roussel-Dupre, A.V. Gurevich, On runaway break-down and upward propagating discharges. J. Geophys. Res. 101, 2297 (1996). doi:10.1029/95JA03278

    ADS  Google Scholar 

  • R.A. Roussel-Dupre, A.V. Gurevich, T. Tunnel, G.M. Milikh, Kinetic theory of runaway breakdown. Phys. Rev. 49, 2257 (1994)

    ADS  Google Scholar 

  • R. Roussel-Dupre, J.J. Colman, E. Symbalisty, D. Sentman, V.P. Pasko, Physical processes related to discharges in planetary atmospheres. Space Sci. Rev. 137, 51–82 (2008). doi:10.1007/s11214-008-9385-5

    ADS  Google Scholar 

  • H.L. Rowland, Theories and simulations of elves, sprites and blue jets. J. Atmos. Sol.-Terr. Phys. 60, 831–844 (1998)

    ADS  Google Scholar 

  • H.L. Rowland, R.F. Fernsler, P.A. Bernhardt, Breakdown of the neutral atmosphere in the D-region due to lightning driven electromagnetic pulses. J. Geophys. Res. 101, 7935 (1996)

    ADS  Google Scholar 

  • S.A. Rutledge, C. Lu, D.R. MacGorman, Positive cloud-to-ground lightning in mesoscale convective systems. J. Atmos. Sci. 47, 2085 (1990)

    ADS  Google Scholar 

  • S.A. Rutledge, E.R. Williams, W.A. Petersen, Lightning and electrical structure of mesoscale convective systems. Atmos. Res. 29, 27 (1993)

    Google Scholar 

  • M.J. Rycroft, Electrical processes coupling the atmosphere and ionosphere: an overview. J. Atmos. Sol.-Terr. Phys. 68, 445–456 (2006)

    ADS  Google Scholar 

  • M.J. Rycroft, A. Odzimek, Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J. Geophys. Res. 115, A00E37 (2010). doi:10.1029/2009JA014758

    Google Scholar 

  • M.J. Rycroft, S. Israelsson, C. Price, The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Sol.-Terr. Phys. 62, 1563–1576 (2000). doi:10.1016/S1364-6826(00)00112-7

    ADS  Google Scholar 

  • F.T. São Sabbas, Role of conductivity spatial structure in determining the locations of sprite initiation, Ph.D. dissertation, Univ. of Alaska Fairbanks, Fairbanks, Alaska, 2003

  • F.T. São Sabbas, D.D. Sentman, Dynamical relationship of infrared cloud top temperatures with occurrence rates of cloud-to-ground lightning and sprites. Geophys. Res. Lett. 30(5), 1236 (2003). doi:10.1029/2002GL015382

    ADS  Google Scholar 

  • F.T.T. São Sabbas, D.D. Sentman, E.M. Wescott, O. Pinto Jr., O. Mendes Jr., M.J. Taylor, Statistical analysis of space–time relationships between sprites and lightning. J. Atmos. Sol.-Terr. Phys. 65, 525–535 (2003)

    ADS  Google Scholar 

  • F.T. Sao Sabbas et al., Characteristics of sprite and gravity wave convective sources present in satellite IR images during the SpreadFEx 2005 in Brazil. Ann. Geophys. 27, 1279–1293 (2009)

    ADS  Google Scholar 

  • F.T. São Sabbas et al., Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 campaign in Brazil. J. Geophys. Res. 115, A00E58 (2010). doi:10.1029/2009JA014857

    ADS  Google Scholar 

  • T.J. Schuur, S.A. Rutledge, Electrification of stratiform regions in mesoscale convective systems, Part I: An observational comparison of symmetric and asymmetric MCSs. J. Atmos. Sci. 57, 1961–1982 (2000a)

    ADS  Google Scholar 

  • T.J. Schuur, S.A. Rutledge, Electrification of stratiform regions in mesoscale convective systems. Part II: Two-dimensional numerical model simulations of a symmetric MCS. J. Atmos. Sci. 57, 1983–2006 (2000b)

    ADS  Google Scholar 

  • D.D. Sentman, E.M. Wescott, Observations of upper atmospheric optical flashes recorded from an aircraft. Geophys. Res. Lett. 20, 2857–2860 (1993)

    ADS  Google Scholar 

  • D.D. Sentman, E.M. Wescott, D.L. Osborne, D.L. Hampton, M.J. Heavner, Preliminary results from the Sprites94 campaign: red sprites. Geophys. Res. Lett. 22, 1205–1208 (1995)

    ADS  Google Scholar 

  • D.D. Sentman, E.M. Wescott, M.J. Heavner, D.R. Moudry, Observations of sprite beads and balls. Eos 77, F61 (1996)

    ADS  Google Scholar 

  • D.D. Sentman, E.M. Wescott, R.H. Picard, J.R. Winick, H.C. Stenbaek-Nielsen, E.M. Dewan, D.R. Moudry, F.T. São Sabbas, M.J. Heavner, J. Morrill, Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm. J. Atmos. Sol.-Terr. Phys. 65, 537–550 (2003)

    ADS  Google Scholar 

  • D. Siingh, R.P. Singh, A.K. Kamra, P.N. Gupta, R. Singh, V. Gopalakrishnan, A.K. Singh, Review of electromagnetic coupling between the Earth’s atmosphere and the space environment. J. Atmos. Sol.-Terr. Phys. 67, 637–658 (2005). doi:10.1016/j.jastp.2004.09

    ADS  Google Scholar 

  • D. Siingh, V. Gopalakrishnan, R.P. Singh, A.K. Kamra, S. Singh, V. Pant, R. Singh, A.K. Singh, The atmospheric global electric circuit: an overview. Atmos. Res. 84, 91–110 (2007). doi:10.1016/j.atmosres.2006.05.005

    Google Scholar 

  • D. Siingh, A.K. Singh, R.P. Patel, R. Singh, R.P. Singh, B. Venadhar, M. Mukherjee, Thunderstorm, lightning, sprites and magnetospheric whistler mode radio wave. Surv. Geophys. 29, 499–551 (2008). doi:10.1007/s10712-008-9053-z

    ADS  Google Scholar 

  • D. Siingh, S. Kumar, A.K. Singh, Thunderstorms/lightning generated sprite and associated phenomena. Earth Sci. India 3(II), 124–145 (2010). http://www.earthscienceindia.info/. Open access e-Journal

    Google Scholar 

  • D. Siingh, A.K. Singh, R.P. Singh, Characteristic of cloud-to-ground lightning discharge associated with sprites. I. J. Radio Space Phys. (2012) (revised)

  • A.K. Singh, D. Siingh, R.P. Singh, S. Mishra, Electrodynamical coupling of Earth’s atmosphere and ionosphere: an overview. Int. J. Geophys. 2011, 971302 (2011). doi:10.1155/2011/971302, 13 pp.

    Google Scholar 

  • D.K. Singh, R.P. Singh, A.K. Kamra, The electrical environment of the Earth’s atmosphere: a review. Space Sci. Rev. 113, 375–408 (2004)

    ADS  Google Scholar 

  • J.B. Snively, V.P. Pasko, Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes. Geophys. Res. Lett. 30, 2254 (2003). doi:10.1029/2003GL018436

    Google Scholar 

  • D.M. Smith, L.I. Lopez, R.P. Lin, C.P. Barrington-Leigh, Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307, 1085–1088 (2005). doi:10.1126/science.1107466

    ADS  Google Scholar 

  • S. Soula, O. van der Velde, J. Montanya, T. Neubert, O. Chanrion, M. Ganot, Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: two case studies. Atmos. Res. 91, 514–528 (2009)

    Google Scholar 

  • S. Soula, O. van der Velde, J. Montanya, P. Huet, C. Barthe, J. Bór, Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island. J. Geophys. Res. 116, D19103 (2011). doi:10.1029/2010JD015581

    ADS  Google Scholar 

  • M. Stanley, P. Krehbiel, M.C. Max Brook, W. Rison, B. Abrahams, High speed video of initial sprite development. Geophys. Res. Lett. 26, 3201–3204 (1999)

    ADS  Google Scholar 

  • H.C. Stenbaek-Nielsen, D.R. Moudry, E.M. Wescott, D.D. Sentman, F.T.S. Sabbas, Sprites and possible mesospheric effects. Geophys. Res. Lett. 27, 3829–3832 (2000)

    ADS  Google Scholar 

  • M.G. Stenbaek-Nielsen, T. McHarg Kammae, D.D. Sentmann, Observed emission rates in sprite streamer heads. Geophys. Res. Lett. 34, L11105 (2007). doi:10.1029/2007GL029881

    ADS  Google Scholar 

  • H.C. Stenbaek-Nielsen, R. Haaland, M.G. McHarg, B.A. Hensley, T. Kanmae, Sprite initiation altitude measured by triangulation. J. Geophys. Res. 115, A00E12 (2010). doi:10.1029/2009JA014543

    ADS  Google Scholar 

  • M. Stolzenburg, T.C. Marshall, Charge structure and dynamics in thunderstorms. Space Sci. Rev. 137 (2008). doi:10.1007/s11214-008-9338-z

  • M. Stolzenburg, T.C. Marshall, W.D. Rust, B.F. Smull, Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system. Mon. Weather Rev. 122, 1777–1797 (1994)

    ADS  Google Scholar 

  • H.T. Su, R.R. Hsu, B. Chen Alfred, Y.J. Lee, L.C. Lee, Observation of sprites over the Asian Continent and over Oceans around Taiwan. Geophys. Res. Lett. 29, 10 (2002). doi:10.1029/2001GL013737

    Google Scholar 

  • H.T. Su, R.R. Hsu, A.B. Chen, Y.C. Wang, W.S. Hsiao, W.C. Lai, M. Sato, H. Fukunishi, Gigantic jet between a thundercloud and the ionosphere. Nature 423, 974–976 (2003)

    ADS  Google Scholar 

  • A.I. Sukhorukov, P. Stubbe, Problems of blue jet theories. J. Atmos. Sol.-Terr. Phys. 60, 725–732 (1998)

    ADS  Google Scholar 

  • A.I. Sukhorukov, E.V. Mishin, P. Stubbe, M.J. Rycroft, On blue jet dynamics. Geophys. Res. Lett. 23, 1625–1628 (1996)

    ADS  Google Scholar 

  • G.R. Swenson, R. Rairden, What is the source of sprite seed electrons, in AGU fall meeting, A41C-14, San Francisco (1998)

    Google Scholar 

  • T. Takahashi, Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 35, 1536–1548 (1978)

    ADS  Google Scholar 

  • T. Takahashi, T. Tajiri, Y. Sonoi, Charges on graupel and snow crystals and the electrical structure of winter thunderstorms. J. Atmos. Sci. 56, 1561–1578 (1999)

    ADS  Google Scholar 

  • Y. Takahashi, R. Miyasato, T. Adachi, K. Adachi, M. Sera, M. Uchida, H. Fukunishi, Activities of sprites and elves in the winter season, Japan. J. Atmos. Sol.-Terr. Phys. 65, 551–560 (2003)

    ADS  Google Scholar 

  • Y.N. Taranenko, U.S. Inan, T.F. Bell, Interaction with the lower ionosphere of electromagnetic pulses from lightning: heating, attachment, and ionization. Geophys. Res. Lett. 20, 1539–1542 (1993)

    ADS  Google Scholar 

  • M.J. Taylor, M.A. Hapgood, Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emission. Planet. Space Sci. 36, 975–985 (1988)

    ADS  Google Scholar 

  • M.J. Taylor, M.J. Hill, Near infrared imaging of hydroxyl wave structure over an ocean site at low latitudes. Geophys. Res. Lett. 18, 1333–1336 (1991)

    ADS  Google Scholar 

  • M.J. Taylor, Y.Y. Gu, X. Tao, C.S. Gardner, M.B. Bishop, An investigation of intrinsic gravity wave signatures using coordinated lidar and nightglow image measurements. Geophys. Res. Lett. 22, 2853–2856 (1995)

    ADS  Google Scholar 

  • M.J. Taylor, W.R. Pendleton, S. Clark, H. Takahashi, D. Gobbi, R.A. Goldberg, Image measurements of short-period gravity waves at equatorial latitudes. J. Geophys. Res. 102, 26283–26299 (1997)

    ADS  Google Scholar 

  • M.J. Taylor et al., Rare measurements of a sprite with halo event driven by a negative lightning discharge over Argentina. Geophys. Res. Lett. 35, L14812 (2008). doi:10.1029/2008GL033984

    ADS  Google Scholar 

  • M.J. Taylor, P.-D. Pautet, A.F. Medeiros, R. Buriti, J. Fechine, D.C. Fritts, S.L. Vadas, H. Takahashi, F.T. Sao Sabbas, Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign. Ann. Geophys. 27, 461–472 (2009)

    ADS  Google Scholar 

  • J.N. Thomas, B.H. Barnum, E. Lay, R.H. Holzworth, M. Cho, M.C. Kelley, Lightning driven electric fields measured in the lower ionosphere: implications for transient luminous events. J. Geophys. Res. 113, A12306 (2008). doi:10.1029/2008JA013567

    ADS  Google Scholar 

  • L.Z. Tong, K. Nanbu, H. Fukunishi, Simulation of gigantic jets propagating from the top of thunderclouds to the ionosphere. Earth Planets Space 57, 613–617 (2005)

    ADS  Google Scholar 

  • S.L. Vadas, D.C. Fritts, Thermospheric responses to gravity waves arising from mesoscale convective complexes. J. Atmos. Sol.-Terr. Phys. 66, 781–804 (2004)

    ADS  Google Scholar 

  • S.L. Vadas, M.J. Taylor, P.-D. Pautet, P.A. Stamus, D.C. Fritts, H.-L. Liu, F.T. Sao Sabbas, V.T. Rampinelli, P. Batista, H. Takahashi, Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign. Ann. Geophys. 27, 231–259 (2009). http://www.ann-geophys.net/27/231/2009

    ADS  Google Scholar 

  • O.A. van der Velde, A. Mika, S. Soula, C. Haldoupis, T. Neubert, U.S. Inan, Observations of the relationship between sprite morphology and in-cloud lightning processes. J. Geophys. Res. 111, D15203 (2006). doi:10.1029/2005JD006879

    ADS  Google Scholar 

  • O.A. van der Velde, W.A. Lyons, T.E. Nelson, S.A. Cummer, J. Li, J. Bunnell, Analysis of the first gigantic jet recorded over continental North America. J. Geophys. Res. 112, D20104 (2007). doi:10.1029/2007JD008575

    ADS  Google Scholar 

  • O.A. van der Velde, J. Bór, J. Li, S.A. Cummer, E. Arnone, F. Zanotti, M. Füllekrug, C. Haldoupis, S. NaitAmor, T. Farges, Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe. J. Geophys. Res. 115, D24301 (2010). doi:10.1029/2010JD014442

    ADS  Google Scholar 

  • O.H. Vaughan Jr., B. Vonnegut, Recent observations of lightning discharges from the top of a thundercloud into the air above. J. Geophys. Res. 95, 13179–13182 (1989)

    ADS  Google Scholar 

  • G. Veronis, V.P. Pasko, U.S. Inan, Characteristics of mesospheric optical emissions produced by lighting discharges. J. Geophys. Res. 104, 12645–12656 (1999)

    ADS  Google Scholar 

  • P.A. Vitello, B.M. Penetrante, J.N. Bardsley, Simulation of negative-streamer dynamics in nitrogen. Phys. Rev. E 49, 5574–5598 (1994)

    ADS  Google Scholar 

  • E.M. Wescott, D. Sentman, D. Osborne, D. Hampton, M. Heavner, Preliminary results from the sprites 94 aircraft campaign: 2, blue jets. Geophys. Res. Lett. 22, 1209–1212 (1995)

    ADS  Google Scholar 

  • E.M. Wescott, D.D. Sentman, M.J. Heavner, D.L. Hampton, D. Osborne, O.H. Vaughan Jr., Blue starters: brief upward discharges from an intense Arkansas thunderstorm. Geophys. Res. Lett. 23, 2153–2156 (1996). doi:10.1029/96GL01969

    ADS  Google Scholar 

  • E.M. Wescott, D.D. Sentman, M.J. Heavner, D.L. Hampton, O.H. Vaughan Jr., Blue jets: their relationship to lightning and very large hailfall, and their physical mechanisms for their production. J. Atmos. Sol.-Terr. Phys. 60, 713–724 (1998a)

    ADS  Google Scholar 

  • E.M. Wescott, D. Sentman, M. Heavner, D. Hampton, W.A. Lyons, T. Nelson, Observations of columniform sprites. J. Atmos. Sol.-Terr. Phys. 60, 733–740 (1998b)

    ADS  Google Scholar 

  • E.N. Wescott, H.C. Stenback-Mielsen, D.D. Sentman, M.J. Heavmer, D.R. Moudry, F.T.S. Sabbas, Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors. J. Geophys. Res. 106, 10467–10478 (2001)

    ADS  Google Scholar 

  • E.R. Williams, Meteorological aspects of thunderstorms, in Handbook of Atmospheric Electrodynamics, vol. I, ed. by H. Volland (CRC, Boca Raton, 1995), Chap. 2

    Google Scholar 

  • E.R. Williams, The positive charge reservoir for sprite-producing lightning. J. Atmos. Sol.-Terr. Phys. 60, 689–692 (1998)

    ADS  Google Scholar 

  • E.R. Williams, Sprites, elves and glow discharge tubes. Phys. Today (September issue), 1–7 (2001)

  • E.R. Williams, D.J. Boccippio, Dependence of cloud microphysics and electrification on mescoscale air motions in stratiform precipitation, in 17th Conf. on Severe Local Storms (AMS, St. Louis 1993), pp. 825–831

    Google Scholar 

  • E.R. Williams, N. Renno, An analysis of the conditional instability of the tropical atmosphere. Mon. Weather Rev. 121, 21–36 (1993)

    ADS  Google Scholar 

  • E.R. Williams, Y. Yair, The microphysical and electrical properties of sprite-producing thunderstorms, in Sprites, Elves and Intense Lightning Discharges, ed. by M. Fullekrug, E.A. Mareev, M.J. Rycroft. NATO Science Series, II. Mathematics, Physics and Chemistry, vol. II (Springer, Dordrecht, 2006), pp. 57–84

    Google Scholar 

  • E.R. Williams, R. Zhang, D.J. Boccippio, Microphysical growth rate of ice particle and large-scale electrical structure of cloud. J. Geophys. Res. 99, 10787–10792 (1994)

    ADS  Google Scholar 

  • E.R. Williams, E. Downes, R. Boldi, W.A. Lyons, S. Heckman, Polarity asymmetry of sprite-producing lightning: a paradox? Radio Sci. 42, RS2S17 (2007a). doi:10.1029/2006RS003488

    Google Scholar 

  • E.R. Williams, V.C. Mushtak, R. Boldi, R.L. Dowden, Z.I. Kawasaki, Sprite lightning heard round the world by Schumann resonance methods. Radio Sci. 42, RS2S20 (2007b). doi:10.1029/2006RS003498

    Google Scholar 

  • E.R. Williams et al., Ground-based detection of sprites and their parent lightning flashes over Africa during the 2006 AMMA campaign. Q. J. R. Meteorol. Soc. 136(s1), 257–271 (2010)

    ADS  Google Scholar 

  • E.R. Williams et al., Resolution of the sprite polarity paradox: the role of halos. Radio Sci. 47, RS2002 (2012). doi:10.1029/2011RS004794

    ADS  Google Scholar 

  • C.T.R. Wilson, Investigations on lightning discharges and on the electric field of thunderstorms. Philos. Trans. R. Soc. Lond. Ser. A 221, 73–115 (1921)

    ADS  Google Scholar 

  • C.T.R. Wilson, The electric field of a thunderstorm and some of its effects. Proc. R. Soc. Lond. 37, 32D (1925)

    Google Scholar 

  • C.T.R. Wilson, A theory of thundercloud electricity. Proc. R. Met. Soc. Lond. 236, 297–317 (1956)

    ADS  Google Scholar 

  • C.M. Wrasse, T. Nakamura, H. Takahashi, A.F. Medeiros, M.J. Taylor, D. Gobbi, C.M. Denardini, J. Fechine, R.A. Buriti, A. Salatun, Suratno, E. Achmad, A.G. Admiranto, Mesospheric gravity waves observed near equatorial and low-middle latitude stations: wave characteristics and reverse ray tracing results. Ann. Geophys. 24, 3229–3240 (2006a)

    ADS  Google Scholar 

  • C.M. Wrasse, T. Nakamura, T. Tsuda, H. Takahashi, A.F. Medeiros, M.J. Taylor, D. Gobbi, A. Salatun, Suratno, E. Achmad, A.G. Admiranto, Reverse ray tracing of the mesospheric gravity waves 345 observed at 23S (Brazil) and 7S (Indonesia) in airglow imagers. J. Atmos. Sol.-Terr. Phys. 68, 163–181 (2006b)

    ADS  Google Scholar 

  • Y. Yair, P. Israelevich, A.D. Devir, M. Moalem, C. Price, J.H. Joseph, Z. Levin, B. Ziv, A. Sternlieb, A. Teller, New observations of sprites from the space shuttle. J. Geophys. Res. 109, D15201 (2004). doi:10.1029/2003JD004497

    ADS  Google Scholar 

  • Y. Yamada, H. Fukunishi, T. Nakamura, T. Tsuda, Breakdown of small-scale quasi-stationary gravity wave and transition to turbulence observed in OH airglow. Geophys. Res. Lett. 28, 2153–2156 (2001)

    ADS  Google Scholar 

  • S.A. Yashunin, E.A. Mareev, V.A. Rakov, Are lightning M components capable of initiating sprites and sprite halos? J. Geophys. Res. 112, D10109 (2007). doi:10.1029/2006JD007631

    ADS  Google Scholar 

  • V. Yukhimuk, R. Roussel-Dupré, E. Symbalisty, Optical characteristics of blue jets produced by runaway air breakdown, simulation results. Geophys. Res. Lett. 25, 3289–3292 (1998)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported under the collaboration programme of IITM, Pune and BHU Varanasi and also partially supported under CAWSES programme (D.S.). D.S., M.N.K. are thankful to Prof. B.N. Goswami, director for kind support and encouragement. The authors special thanks to Prof. R.R. Hsu (Reviewer II) for very thoughtful and critical comments which helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendraa Siingh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siingh, D., Singh, R.P., Singh, A.K. et al. Discharges in the Stratosphere and Mesosphere. Space Sci Rev 169, 73–121 (2012). https://doi.org/10.1007/s11214-012-9906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9906-0

Keywords

Navigation