Skip to main content

Advertisement

Log in

Synchronized Helicity Oscillations: A Link Between Planetary Tides and the Solar Cycle?

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Recent years have seen an increased interest in the question of whether the gravitational action of planets could have an influence on the solar dynamo. Without discussing the observational validity of the claimed correlations, we examine which possible physical mechanism might link the weak planetary forces with solar dynamo action. We focus on the helicity oscillations that were recently found in simulations of the current-driven, kink-type Tayler instability, which is characterized by an \(m=1\) azimuthal dependence. We show how these helicity oscillations may be resonantly excited by some \(m=2\) perturbations that reflect a tidal oscillation. Specifically, we speculate that the tidal oscillation of 11.07 years induced by the Venus–Earth–Jupiter system may lead to a 1:1 resonant excitation of the oscillation of the \(\alpha\)-effect. Finally, we recover a 22.14-year cycle of the solar dynamo in the framework of a reduced zero-dimensional \(\alpha\)\(\Omega\) dynamo model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012, Is there a planetary influence on solar activity? Astron. Astrophys. 548, A88. DOI .

    Article  ADS  Google Scholar 

  • Babcock, H.W.: 1961, The topology of the suns magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI .

    Article  ADS  Google Scholar 

  • Bollinger, C.J.: 1952, A 44.77 year Jupiter–Venus–Earth configuration Sun-tide period in solar-climatic cycles. Proc. Okla. Acad. Sci. 33, 307.

    Google Scholar 

  • Bonanno, A., Brandenburg, A., Del Sordo, F., Mitra, D.: 2012, Breakdown of chiral symmetry during saturation of the Tayler instability. Phys. Rev. E 86, 016313. DOI .

    Article  ADS  Google Scholar 

  • Brandenburg, A.: 2005, The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 625. DOI .

    Article  Google Scholar 

  • Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., Morrow, C.: 1989, Inferring the Sun’s internal angular velocity from observed p-mode frequency splitting. Astrophys. J. 343, 526. DOI .

    Article  ADS  Google Scholar 

  • Callebaut, D.K., de Jager, C., Duhau, S.: 2012, The influence of planetary attractions on the solar tachocline. J. Atmos. Solar-Terr. Phys. 80, 73. DOI .

    Article  ADS  Google Scholar 

  • Cébron, D., Hollerbach, R.: 2014, Tidally driven dynamos in a rotating sphere. Astrophys. J. Lett. 789, L25. DOI .

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7, 3. DOI .

    Article  ADS  Google Scholar 

  • Charbonneau, P., Dikpati, M.: 2000, Stochastic fluctuations in a Babcock-model of the solar cycle. Astrophys. J. 543, 1027. DOI .

    Article  ADS  Google Scholar 

  • Charvatova, I.: 1997, Solar-terrestrial and climatic phenomena in relation to solar inertial motion. Surv. Geophys. 18, 131. DOI .

    Article  ADS  Google Scholar 

  • Chatterjee, P., Mitra, D., Brandenburg, A., Rheinhardt, M.: 2011, Spontaneous chiral symmetry breaking by hydromagnetic buoyancy. Phys. Rev. E 84, 025403. DOI .

    Article  ADS  Google Scholar 

  • Chiba, M., Tosa, M.: 1990, Swing excitation of galactic magnetic-fields induced by spiral density waves. Mon. Not. Roy. Astron. Soc. 244, 714. DOI .

    ADS  Google Scholar 

  • Choudhuri, A.R., Karak, B.B.: 2009, A possible explanation of the Maunder minimum from a flux transport dynamo model. Res. Astron. Astrophys. 9, 953.

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Schüssler, M., Dikpati, M.: 1995, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29.

    ADS  Google Scholar 

  • Cole, T.W.: 1973, Periodicities in solar activities. Solar Phys. 30, 103. DOI .

    Article  ADS  Google Scholar 

  • Condon, J.J., Schmidt, R.R.: 1975, Planetary tides and the sunspot cycles. Solar Phys. 42, 529. DOI .

    Article  ADS  Google Scholar 

  • Courvoisier, A., Hughes, D.W., Tobias, S.M.: 2006, \(\alpha\) effect in a family of chaotic flows. Phys. Rev. Lett. 96, 034503. DOI .

    Article  ADS  Google Scholar 

  • Davidson, P.A.: 2001, An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • De Jager, C., Versteegh, G.: 2005, Do planetary motions drive solar variability? Solar Phys. 229, 175. DOI .

    Article  ADS  Google Scholar 

  • Dikpati, M., Gilman, P.: 2001, Flux-transport dynamos with alpha-effect from global instability of tachocline differential rotation: A solution for magnetic parity selection in the Sun. Astrophys. J. 559, 428. DOI .

    Article  ADS  Google Scholar 

  • D’Silva, S., Choudhuri, A.R.: 1993, A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621.

    ADS  Google Scholar 

  • Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6, 4. DOI .

    Article  ADS  Google Scholar 

  • Ferriz Mas, A., Schmitt, D., Schüssler, M.: 1994, A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949.

    ADS  Google Scholar 

  • Gellert, M., Rüdiger, G., Hollerbach, R.: 2011, Helicity and alpha-effect by current-driven instabilities of helical magnetic fields. Mon. Not. Roy. Astron. Soc. 414, 2696. DOI .

    Article  ADS  Google Scholar 

  • Giesecke, A., Stefani, F., Burguete, J.: 2012, Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Phys. Rev. E 86, 066303. DOI .

    Article  ADS  Google Scholar 

  • Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W.: 2010, Solar influences on climate. Rev. Geophys. 48, RG4001. DOI .

    Article  ADS  Google Scholar 

  • Herreman, W., Nore, C., Cappanera, L., Guermond, J.-L.: 2015, Tayler instability in liquid metal columns and liquid metal batteries. J. Fluid Mech. 771, 79. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Hoyng, P.: 1993, Helicity fluctuations in mean-field theory: An explanation for the variability of the solar cycle? Astron. Astrophys. 272, 321.

    ADS  MathSciNet  Google Scholar 

  • Hung, C.-C.: 2007, Apparent relations between solar activity and solar tides caused by the planets. NASA/TM-2007-214817, 1.

  • Jiang, J., Chatterjee, P., Choudhuri, A.R.: 2007, Solar activity forecast with a dynamo model. Mon. Not. Roy. Astron. Soc. 381, 1527. DOI .

    Article  ADS  Google Scholar 

  • Jose, P.D.: 1965, Suns motion and sunspots. Astron. J. 70, 193. DOI .

    Article  ADS  Google Scholar 

  • Krause, F., Rädler, K.-H.: 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, Akademie Verlag, Berlin.

    MATH  Google Scholar 

  • Leighton, R.B.: 1964, Transport of magnetic field on the Sun. Astrophys. J. 140, 1547. DOI .

    Article  ADS  MATH  Google Scholar 

  • Meir, A.J., Schmidt, P.G., Bakhtiyarov, S.I., Overfelt, R.A.: 2004, Numerical simulation of steady liquid – Metal flow in the presence of a static magnetic field. J. Appl. Mech. 71, 786. DOI .

    Article  ADS  MATH  Google Scholar 

  • Okhlopkov, V.P.: 2014, The 11-year cycle of solar activity and configurations of the planets. Moscow Univ. Phys. Bull. 69, 257. DOI .

    Article  ADS  Google Scholar 

  • Palus, M., Kurths, J., Schwarz, U., Novotna, D., Charvatova, I.: 2000, Is the solar activity cycle synchronized with the solar inertial motion? Int. J. Bifurc. Chaos Appl. Sci. Eng. 10, 2519. DOI .

    MATH  Google Scholar 

  • Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J. 122, 293. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurths, J.: 2001, Synchronizations: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Pitts, E., Tayler, R.J.: 1985, The adiabatic stability of stars containing magnetic-fields. 6. The influence of rotation. Mon. Not. Roy. Astron. Soc. 216, 139. DOI .

    Article  ADS  Google Scholar 

  • Proctor, M.: 2006, Dynamo Action and the Sun, EAS Pub. Ser. 21, 241. DOI .

    Google Scholar 

  • Rädler, K., Stepanov, R.: 2006, Mean electromotive force due to turbulence of a conducting fluid in the presence of mean flow. Phys. Rev. E 73, 056311. DOI .

    Article  ADS  Google Scholar 

  • Rüdiger, G., Kitchatinov, L.L., Hollerbach, R.: 2013, Magnetic Processes in Astrophysics, Wiley-VCH, Berlin.

    Book  Google Scholar 

  • Rüdiger, G., Schultz, M., Gellert, M., Stefani, F.: 2015, Subcritical excitation of the current-driven Tayler instability by super-rotation. Phys. Fluids 28, 014105. DOI .

    Article  Google Scholar 

  • Scafetta, N.: 2010, Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Solar-Terr. Phys. 72, 951. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N.: 2014, The complex planetary synchronization structure of the solar system. Pattern Recogn. Phys. 2, 1. DOI .

    Article  ADS  Google Scholar 

  • Schmitt, D., Schüssler, M., Ferriz Mas, A.: 1996, Intermittent solar activity by an on-off dynamo. Astron. Astrophys. 311, L1.

    ADS  Google Scholar 

  • Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M., Rüdiger, G.: 2012, Experimental evidence for Tayler instability in a liquid metal column. Phys. Rev. Lett. 108, 244501. DOI .

    Article  ADS  Google Scholar 

  • Spruit, H.: 2002, Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923. DOI .

    Article  ADS  Google Scholar 

  • Steenbeck, M., Krause, F.: 1969, Zur Dynamotheorie stellarer und planetarer Magnetfelder. I. Berechnung sonnenähnlicher Wechselfeldgeneratoren. Astron. Nachr. 291, 49. DOI .

    Article  ADS  MATH  Google Scholar 

  • Steenbeck, M., Krause, F., Rädler, K.-H.: 1966, Berechnung der mittleren Lorentz-Feldstärke vxB für ein elektrisch leitendes Medium in turbulenter durch Coriolis-Kräfte beeinflusster Bewegung. Z. Naturforsch. A, J. Phys. Sci. 21(4), 369. DOI .

    ADS  Google Scholar 

  • Stefani, F., Kirillov, O.N.: 2015, Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001(R). DOI .

    Article  ADS  Google Scholar 

  • Stix, M.: 1972, Nonlinear dynamo waves. Astron. Astrophys. 20, 9.

    ADS  MATH  Google Scholar 

  • Svensmark, H., Friis-Christensen, E.: 1997, Variation of cosmic ray flux and global cloud coverage – A missing link in solar-climate relationships. J. Atmos. Solar-Terr. Phys. 59, 1225. DOI .

    Article  ADS  Google Scholar 

  • Takahashi, K.: 1968, On the relation between the solar activity cycle and the solar tidal force induced by the planets. Solar Phys. 3, 598. DOI .

    Article  ADS  Google Scholar 

  • Tayler, R.J.: 1973, The adiabatic stability of stars containing magnetic fields-I: Toroidal fields. Mon. Not. Roy. Astron. Soc. 161, 365. DOI .

    Article  ADS  Google Scholar 

  • Vainshtein, S.I., Cattaneo, F.: 1992, Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165. DOI .

    Article  ADS  Google Scholar 

  • Weber, M.A., Fan, Y., Miesch, M.S.: 2013, Comparing simulations of rising flux tubes through the solar convection zone with observations of solar active regions: Constraining the dynamo field strength. Solar Phys. 287, 239. DOI .

    Article  ADS  Google Scholar 

  • Weber, N., Galindo, V., Stefani, F., Weier, T., Wondrak, T.: 2013, Numerical simulation of the Tayler instability in liquid metals. New J. Phys. 15, 043034. DOI .

    Article  ADS  Google Scholar 

  • Weber, N., Galindo, V., Stefani, F., Weier, T.: 2015, The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations. New J. Phys. 17, 113013. DOI .

    Article  ADS  Google Scholar 

  • Weiss, N.O., Tobias, S.M.: 2016, Supermodulation of the Sun’s magnetic activity: The effect of symmetry changes. Mon. Not. Roy. Astron. Soc. 456, 2654. DOI .

    Article  ADS  Google Scholar 

  • Wilmot-Smith, A.L., Nandy, D., Hornig, G., Martens, P.C.H.: 2006, A time delay model for solar and stellar dynamos. Astrophys. J. 652, 696. DOI .

    Article  ADS  Google Scholar 

  • Wilson, I.R.G.: 2013, The Venus–Earth–Jupiter spin-orbit coupling model. Pattern Recogn. Phys. 1, 147. DOI .

    Article  ADS  Google Scholar 

  • Wood, K.: 1972, Sunspots and planets. Nature 240(5376), 91. DOI .

    Article  ADS  Google Scholar 

  • Yoshimura, H.: 1975, Solar-cycle dynamo wave propagation. Astrophys. J. 201, 740. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Zahn, J.-P., Brun, A.S., Mathis, S.: 2007, On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 474, 145. DOI .

    Article  ADS  MATH  Google Scholar 

  • Zhang, K., Chan, K.H., Zou, J., Liao, X., Schubert, G.: 2003, A three-dimensional spherical nonlinear interface dynamo. Astrophys. J. 596, 663. DOI .

    Article  ADS  Google Scholar 

  • Zhang, H., Moss, D., Kleeorin, N., Kuzanyan, K., Rogachevskii, I., Sokoloff, D., Gao, Y., Xu, H.: 2012, Current helicity of active regions as a tracer of large-scale solar magnetic helicity. Astrophys. J. 751. DOI .

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft in the frame of the SPP 1488 (PlanetMag), as well as by the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) in the frame of the Helmholtz alliance LIMTECH. Wilcox Solar Observatory data used in this study were obtained via the web site wso.stanford.edu (courtesy of J.T. Hoeksema). The sunspot data are SILSO data from the Royal Observatory of Belgium, Brussels, obtained via www.sidc.be/silso/infosnytot . F. Stefani thanks R. Arlt, A. Bonnano, A. Brandenburg, A. Choudhuri, D. Hughes, M. Gellert, G. Rüdiger, and D. Sokoloff for fruitful discussion on the solar-dynamo mechanism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Stefani.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Appendix: The Numerical Model

Appendix: The Numerical Model

In this appendix we sketch the integro-differential equation scheme that was used in Section 2 to calculate the oscillations of the helicity and \(\alpha\). More details can be found in Weber et al. (2013, 2015). For an alternative numerical method to treat the TI, see Herreman et al. (2015).

In our code we circumvent the usual \(\mathit{Pm}\) limitations of pure differential-equation codes by replacing the solution of the induction equation for the magnetic field by invoking the so-called quasi-static approximation (Davidson, 2001). We replace the explicit time stepping of the magnetic field by computing the electrostatic potential by a Poisson solver and by deriving the electric-current density. In contrast to many other inductionless approximations in which this procedure is sufficient, in our case we cannot avoid computing the induced magnetic field as well. The reason for this is the presence of an externally applied electrical current in the fluid. Computing the Lorentz-force term it turns out that the product of the applied current with the induced field is on the same order as the product of the magnetic field (due to the applied current) with the induced current. The induced magnetic field is computed as follows: in the interior of the domain, we apply the quasi-stationary approximation and solve the vectorial Poisson equation for the magnetic field that results when the temporal derivative in the induction equation is set to zero. At the boundary of the domain, however, the induced magnetic field is computed from the induced current density by means of Biot–Savart’s law. In this way, we arrive at an integro-differential equation approach, similar to the method used by Meir et al. (2004).

In detail, the numerical model as developed by Weber et al. (2013) works as follows: it uses the OpenFOAM library to solve the Navier–Stokes equations (NSE) for incompressible fluids

$$\begin{aligned} \dot{\boldsymbol {u}} + ({\boldsymbol {u}}\cdot \nabla){\boldsymbol {u}} = - \nabla p + \nu\Delta{\boldsymbol {u}} + \frac{\boldsymbol {f}_{\mathrm {L}} }{\rho}\quad \textrm{and}\quad\nabla\cdot\boldsymbol {u} = 0, \end{aligned}$$
(5)

with \(\boldsymbol {u}\) denoting the velocity, \(p\) the (modified) pressure, \(\boldsymbol {f}_{\mathrm {L}} = \boldsymbol {J} \times\boldsymbol {B} \) the electromagnetic Lorentz force density, \(\boldsymbol {J}\) the total current density, and \(\boldsymbol {B}\) the total magnetic field. The NSE is solved using the PISO algorithm and applying no-slip boundary conditions at the walls.

Ohm’s law in moving conductors

$$\begin{aligned} {\boldsymbol {j}} = \sigma(-\nabla\varphi+ {\boldsymbol {u}}\times {\boldsymbol {B}} ) \end{aligned}$$
(6)

allows us to compute the induced current [\(\boldsymbol {j}\)] by previously solving a Poisson equation for the perturbed electric potential [\(\varphi= \phi-J_{0}z/\sigma\)]:

$$\begin{aligned} \Delta\varphi= \nabla\cdot({\boldsymbol {u}} \times{\boldsymbol {B}} ). \end{aligned}$$
(7)

We concentrate now on cylindrical geometries with an axially applied current. After subtracting the (constant) potential part [\(J_{0}z/\sigma\)], with \(z\) as the coordinate along the cylinder axis, we use the simple boundary condition \(\varphi= 0\) at the top and bottom and \(\boldsymbol {n}\cdot\nabla \varphi=0\) at the mantle of the cylinder, with \(\boldsymbol{n}\) as the surface normal vector.

The induced magnetic field at the boundary of the domain can then be calculated by Biot–Savart’s law

$$\begin{aligned} {\boldsymbol {b}}({\boldsymbol {r}}) = \frac{\mu _{0}}{4\pi} \int \mathrm{d}V' \, \frac{{\boldsymbol {j}}({\boldsymbol {r}}') \times ({\boldsymbol {r}}-{\boldsymbol {r}}')}{\vert {\boldsymbol {r}}-{\boldsymbol {r}}'\vert ^{3}}. \end{aligned}$$
(8)

In the bulk of the domain, the magnetic field is computed by solving the vectorial Poisson equation

$$\begin{aligned} \Delta{\boldsymbol {b}}=\mu_{0} \sigma\nabla \times( { \boldsymbol{u}} \times{\boldsymbol{B}} ), \end{aligned}$$
(9)

which results from the full time-dependent induction equation in the quasi-stationary approximation.

Knowing \(\boldsymbol {b}\) and \(\boldsymbol {j}\), we compute the Lorentz force \({\boldsymbol {f}}_{\mathrm {L}}\) for the next iteration. For more details about the numerical scheme, see Sections 2 and 3 of Weber et al. (2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefani, F., Giesecke, A., Weber, N. et al. Synchronized Helicity Oscillations: A Link Between Planetary Tides and the Solar Cycle?. Sol Phys 291, 2197–2212 (2016). https://doi.org/10.1007/s11207-016-0968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0968-0

Keywords

Navigation